Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

PDMS, curing

Instead of using a planar molding master, a fused silica capillary tube (50 pm i.d. and 192 pm o.d.) was used as a template for casting PDMS channels, and as the fluid inlet/outlet tubes. After PDMS curing, the middle pre-scored section (4 cm) of the capillary was removed to reveal the PDMS channel (192 pm wide and deep) [817]. Similarly, a capillary was used to mold a PDMS channel, and to produce an electrospray emitter. In this case, after PDMS curing, the last 0.5-cm section of the capillary was removed to create a channel [821]. [Pg.29]

Enzyme Assay in Microfluidks, Fig. 1 (a) Su-8 mold on silicon wafer during PDMS curing. The PDMS does not leak out of the mold due to interfacial tension. [Pg.1037]

Micromolding, Table 1 PDMS curing times for 1 -5 mm thick films... [Pg.1260]

Silicone acrylates (Fig. 5) are again lower molecular weight base polymers that contain multiple functional groups. As in epoxy systems, the ratio of PDMS to functional material governs properties of release, anchorage, transfer, cure speed, etc. Radiation induced radical cure can be initiated with either exposure of photo initiators and sensitizers to UV light [22,46,71 ] or by electron beam irradiation of the sample. [Pg.546]

Fluorosilicones consist of PDMS backbones with some degree of fluoro-aliphatic side chains. The fluorinated group can be trifluoropropyl, nonafluorohexylmethyl, or fluorinated ether side group [78,28,79]. These polymers differ not only in substituent group, but also in the amount of fluoro-substitution relative to PDMS, the overall molecular weight and crosslink density, and the amount of branching. In most commercially available cases, these polymers are addition cure systems and the reactions are those discussed previously for silicone networks. [Pg.550]

A chemical property of silicones is the possibility of building reactivity on the polymer [1,32,33]. This allows the building of cured silicone networks of controlled molecular architectures with specific adhesion properties while maintaining the inherent physical properties of the PDMS chains. The combination of the unique bulk characteristics of the silicone networks, the surface properties of the PDMS segments, and the specificity and controllability of the reactive groups, produces unique materials useful as adhesives, protective encapsulants, coatings and sealants. [Pg.681]

One-part moisture condensation cure. The one-part condensation cure system is a room-temperature vulcanizing (RTV) system that is based on a reactive PDMS polymer that undergoes hydrolysis on contact of air moisture, followed by condensation to yield a crosslinked elastomer. The most common systems [3,12,14,33] are based on the reactions shown in Scheme 5. [Pg.682]

Scheme 12. Schematic structure of vinyl-eb-PDMS chains (dashed line) crosslinked with polymeric TMS-eb-PHMS through the hydrosilylation cure reaction. For illustration purpose the PDMS chains in this scheme are shorter and less abundant relative to PHMS than in real system. Scheme 12. Schematic structure of vinyl-eb-PDMS chains (dashed line) crosslinked with polymeric TMS-eb-PHMS through the hydrosilylation cure reaction. For illustration purpose the PDMS chains in this scheme are shorter and less abundant relative to PHMS than in real system.
The UV cure system contains an epoxy or a vinyl ether functionalized PDMS polymer and a photo catalyst [36]. This latter, a diaryliodonium salt is photolyti-cally decomposed to form an active acid that polymerizes the epoxy or vinyl ether groups and crosslinks the network. [Pg.688]

Once cured, PDMS networks are essentially made of dimethylsiloxane polymeric chains crosslinked with organic linkages. The general and inherent molecular properties of the PDMS polymers are therefore conferred to the silicone network. Low surface energy and flexibility of siloxane segments are two inherent properties very useful in adhesion technology. [Pg.688]

PDMS based siloxane polymers wet and spread easily on most surfaces as their surface tensions are less than the critical surface tensions of most substrates. This thermodynamically driven property ensures that surface irregularities and pores are filled with adhesive, giving an interfacial phase that is continuous and without voids. The gas permeability of the silicone will allow any gases trapped at the interface to be displaced. Thus, maximum van der Waals and London dispersion intermolecular interactions are obtained at the silicone-substrate interface. It must be noted that suitable liquids reaching the adhesive-substrate interface would immediately interfere with these intermolecular interactions and displace the adhesive from the surface. For example, a study that involved curing a one-part alkoxy terminated silicone adhesive against a wafer of alumina, has shown that water will theoretically displace the cured silicone from the surface of the wafer if physisorption was the sole interaction between the surfaces [38]. Moreover, all these low energy bonds would be thermally sensitive and reversible. [Pg.689]

The role played by the various ingredients in the composition of sealant, and in particular on the durability of adhesion has been discussed recently [77]. Inert plasticizers, such as trimethylsilyl-endblocked-PDMS, are typically added to silicone sealant compositions in order to adjust the rheology of the uncured sealant. They result in a reduction of the modulus and hardness of the cured sealant. Differences in the durability of silicone sealants are found to be due to differences in their cure chemistry, and more specifically to the nature and... [Pg.700]

Preparation and thermal crosslinking reactions of oc, -vinylbenzyl terminated polysulfone-b-polydimethylsiloxane, ABA type block copolymers have been discussed 282,313) However, relatively little characterization was reported. Molecular weights of polysulfone and PDMS segments in the copolymers were varied between 800-8,000 and 500-11,000 g/mole, respectively. After thermal curing, the networks obtained showed two phase morphologies as indicated by the detection of two glass transition temperatures (—123 °C and +200 °C) corresponding to PDMS and polysulfone phases, respectively. No mechanical characterization data were provided. [Pg.61]

For many applications, it is desirable that the adhesive layer accept printable elements readily in its fully cured state. This characteristic usually requires the layer to be soft in its cured form. Adhesive thin films composed of low-modulus PDMS elastomer meet this requirement well18 and can guide transfer of elements to a target quickly (without exposure to heat or light). Surprisingly, the direction of transfer can be well defined even when the composition of the adhesive is identical to that of the stamp. Successful transfer is thus determined by several factors surface chemistry, conformability (modulus), geometrical/mechanical factors (e.g., adhesive film thickness), and others. [Pg.419]


See other pages where PDMS, curing is mentioned: [Pg.265]    [Pg.86]    [Pg.63]    [Pg.508]    [Pg.2109]    [Pg.180]    [Pg.188]    [Pg.265]    [Pg.86]    [Pg.63]    [Pg.508]    [Pg.2109]    [Pg.180]    [Pg.188]    [Pg.328]    [Pg.57]    [Pg.57]    [Pg.57]    [Pg.57]    [Pg.57]    [Pg.58]    [Pg.58]    [Pg.58]    [Pg.58]    [Pg.543]    [Pg.546]    [Pg.547]    [Pg.684]    [Pg.686]    [Pg.689]    [Pg.60]    [Pg.60]    [Pg.875]    [Pg.363]    [Pg.417]    [Pg.350]    [Pg.456]    [Pg.457]    [Pg.467]    [Pg.676]    [Pg.174]    [Pg.328]   
See also in sourсe #XX -- [ Pg.25 , Pg.27 ]




SEARCH



PDMS

© 2024 chempedia.info