Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization Pd

Selective Hydrogenation of Dehydrolinalool to Linalool Using Nanostructured Pd-Polymeric... [Pg.177]

An unusual aspect of Brookhart s Ni and Pd polymerization catalysts was that they could produce highly branched polyethylene, with the amount of branching controlled in large part by the ethylene pressure. Mechanistic studies indicated that facile /3-hydride eliminations on these catalysts under lower ethylene pressures enabled a chainwalking isomerization process shown in Figure 21. This leads to branching (sometimes extensive) of the growing... [Pg.137]

A low ceiling temperature of the PD polymerization ( 70°C) makes it possible to carry out the polymerization at low temperatures only [94,95]. [Pg.190]

Several studies have demonstrated the successful incoriDoration of [60]fullerene into polymeric stmctures by following two general concepts (i) in-chain addition, so called pearl necklace type polymers or (ii) on-chain addition pendant polymers. Pendant copolymers emerge predominantly from the controlled mono- and multiple functionalization of the fullerene core with different amine-, azide-, ethylene propylene terjDolymer, polystyrene, poly(oxyethylene) and poly(oxypropylene) precursors [63,64,65,66,62 and 66]. On the other hand, (-CggPd-) polymers of the pearl necklace type were fonned via the periodic linkage of [60]fullerene and Pd monomer units after their initial reaction with thep-xy y ene diradical [69,70 and 71]. [Pg.2416]

Dimethyl acetylenedicarboxylate (DMAD) (125) is a very special alkyne and undergoes interesting cyclotrimerization and co-cyclization reactions of its own using the poorly soluble polymeric palladacyclopentadiene complex (TCPC) 75 and its diazadiene stabilized complex 123 as precursors of Pd(0) catalysts, Cyclotrimerization of DMAD is catalyzed by 123[60], In addition to the hexa-substituted benzene 126, the cyclooctatetraene derivative 127 was obtained by the co-cyclization of trimethylsilylpropargyl alcohol with an excess of DMAD (125)[6l], Co-cyclization is possible with various alkenes. The naphthalene-tetracarboxylate 129 was obtained by the reaction of methoxyallene (128) with an excess of DMAD using the catalyst 123[62],... [Pg.487]

Copolymerization to form polyketones proceeds by the carbonylation of some alkenes in the absence of nucleophiles. Copolymerization of CO and norbornadiene takes place to give the polyketone 28(28]. Reaction of ethylene and other alkenes with CO affords the polyketones 29. The use of cationic Pd catalysts and bipyridyl or 1,10-phenanthroline is important for the polymerization [29-31]. [Pg.516]

The range of uses of mercuric iodide has increased because of its abiUty to detect nuclear particles. Various metals such as Pd, Cu, Al, Tri, Sn, Ag, and Ta affect the photoluminescence of Hgl2, which is of importance in the preparation of high quaUty photodetectors (qv). Hgl2 has also been mentioned as a catalyst in group transfer polymerization of methacrylates or acrylates (8). [Pg.113]

Polymerization by G—G Goupling. An aromatic carbon—carbon coupling reaction has been employed for the synthesis of rigid rod-like polyimides from imide-containing dibromo compounds and aromatic diboronic acids ia the presence of palladium catalyst, Pd[P(CgH )2]4 (79,80). [Pg.403]

The most important reaction with Lewis acids such as boron trifluoride etherate is polymerization (Scheme 30) (72MI50601). Other Lewis acids have been used SnCL, Bu 2A1C1, Bu sAl, Et2Zn, SO3, PFs, TiCU, AICI3, Pd(II) and Pt(II) salts. Trialkylaluminum, dialkylzinc and other alkyl metal initiators may partially hydrolyze to catalyze the polymerization by an anionic mechanism rather than the cationic one illustrated in Scheme 30. Cyclic dimers and trimers are often products of cationic polymerization reactions, and desulfurization of the monomer may occur. Polymerization of optically active thiiranes yields optically active polymers (75MI50600). [Pg.146]

Complexes of and The effect of complexation on the splitting of d orbitals is much greater in the case of second- and third-than for first-row transition elements, and the associated effects already noted for Ni are even more marked for Pd and Pi as a result, their complexes are, with rare exceptions, diamagnetic and the vast majority are planar also. Not many complexes are formed with O-donor ligands but, of the few that arc, [M(H20)4] ions, and the polymeric anhydrous acetates [Pd(02CMe)2l3 and [Pt(02CMc)2]4 (Fig. 27.10), are the most... [Pg.1161]

To accelerate the polymerization process, some water-soluble salts of heavy metals (Fe, Co, Ni, Pb) are added to the reaction system (0.01-1% with respect to the monomer mass). These additions facilitate the reaction heat removal and allow the reaction to be carried out at lower temperatures. To reduce the coagulate formation and deposits of polymers on the reactor walls, the additions of water-soluble salts (borates, phosphates, and silicates of alkali metals) are introduced into the reaction mixture. The residual monomer content in the emulsion can be decreased by hydrogenizing the double bond in the presence of catalysts (Raney Ni, and salts of Ru, Co, Fe, Pd, Pt, Ir, Ro, and Co on alumina). The same purpose can be achieved by adding amidase to the emulsion. [Pg.68]

Pavlinec and Lazar [39] reported that organic hydroperoxide and piperidine(PD) could be used as an initiator for MMA polymerization. In our laboratory, we also found that TBH-NMMP, TBH-NEMP [20], TBH-PD(piperidine) [31], TBH-NEP(N-ethylpiperdine) [31], TBH-TMDAPM (N,N -tertramethyl-diamin-odiphenyl-methane), and TBH-TMEDA(MN.NW -tera-methylethylenediamine) [15] systems could initiate MMA to polymerize. The kinetic equation of MMA polymerization initiated with CHP-DMT system has been investigated in our laboratory and the rate equation of polymerization is shown as follows ... [Pg.232]

Because low-valent transition metals such Ni(0) and Pd(0) are air and/or moisture sensitive,34 the exclusion of oxygen and/or moisture is also crucial for the polymerization. Failure to exclude oxygen will deactivate the catalysts, thus causing the termination of the polymerization and influencing the polymerization degree. [Pg.477]

Efforts have been made to propose a heterogeneous version of this reaction by polymerization or support-anchoring of these N-containing hgands. In most cases, however, even if success was obtained by using these heterogeneous catalysts, their recycling remained non-efficient, mainly due to the poor stabihty of the active Pd(0) species. [Pg.143]

There is a whole spectrum of heterogeneous catalysts, but the most common types consist of an inorganic or polymeric support, which may be inert or have acid or basic functionality, together with a bound metal, often Pd, Pt, Ni or Co. Even if the support is inert its structure is of vital importance to the efficiency of the catal ic reaction. Since the reactants are in a different phase to the catalyst both diffusion and adsorption influence the overall rate, these factors to some extent depending on the nature and structure of the support. [Pg.88]

Figure 7. SEM and XRMA microphotographs of palladium catalysts supported on the amphiphilic resin made by DMAA, MTEA, MBAA (cross-linker) [30]. Microphotographs (a) and (b) show an image and the radial palladium distribution after uptake of [Pd(OAc)2] from water/acetone the precursor diffuses only into the outer layer of the relatively little swollen CFP after reduction the nanoclusters remain close to the edge of the catalyst beads. Microphotographs (c) and (d) show the radial distribution of sulfur and palladium, respectively, after uptake of [PdCU] from water after reduction palladium is homogenously distributed throughout the catalyst particles. This indicates that under these conditions the CFP was swollen enough to allow the metal precursor to readily penetrate the whole of polymeric mass. (Reprinted from Ref. [30], 2005, with permission from Elsevier.)... Figure 7. SEM and XRMA microphotographs of palladium catalysts supported on the amphiphilic resin made by DMAA, MTEA, MBAA (cross-linker) [30]. Microphotographs (a) and (b) show an image and the radial palladium distribution after uptake of [Pd(OAc)2] from water/acetone the precursor diffuses only into the outer layer of the relatively little swollen CFP after reduction the nanoclusters remain close to the edge of the catalyst beads. Microphotographs (c) and (d) show the radial distribution of sulfur and palladium, respectively, after uptake of [PdCU] from water after reduction palladium is homogenously distributed throughout the catalyst particles. This indicates that under these conditions the CFP was swollen enough to allow the metal precursor to readily penetrate the whole of polymeric mass. (Reprinted from Ref. [30], 2005, with permission from Elsevier.)...
In this way, Davies and co-workers proved that for monomeric organohalide carbonylation, the catalyst was homogeneous, although Pd/C was used as pre-catalyst. This fact was in addition supported by the catal5fiic activity observed with related polymeric halides [30]. [Pg.430]


See other pages where Polymerization Pd is mentioned: [Pg.536]    [Pg.267]    [Pg.718]    [Pg.367]    [Pg.157]    [Pg.536]    [Pg.267]    [Pg.718]    [Pg.367]    [Pg.157]    [Pg.141]    [Pg.384]    [Pg.504]    [Pg.182]    [Pg.519]    [Pg.715]    [Pg.764]    [Pg.166]    [Pg.251]    [Pg.163]    [Pg.290]    [Pg.484]    [Pg.41]    [Pg.57]    [Pg.100]    [Pg.487]    [Pg.494]    [Pg.43]    [Pg.52]    [Pg.109]    [Pg.77]    [Pg.215]    [Pg.218]    [Pg.218]    [Pg.223]    [Pg.227]    [Pg.227]    [Pg.228]   
See also in sourсe #XX -- [ Pg.269 ]




SEARCH



The Polymerization of Acetylene on Pd Clusters

© 2024 chempedia.info