Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passive films anodic

Corrosion protection of metals can take many fonns, one of which is passivation. As mentioned above, passivation is the fonnation of a thin protective film (most commonly oxide or hydrated oxide) on a metallic surface. Certain metals that are prone to passivation will fonn a thin oxide film that displaces the electrode potential of the metal by +0.5-2.0 V. The film severely hinders the difflision rate of metal ions from the electrode to tire solid-gas or solid-liquid interface, thus providing corrosion resistance. This decreased corrosion rate is best illustrated by anodic polarization curves, which are constructed by measuring the net current from an electrode into solution (the corrosion current) under an applied voltage. For passivable metals, the current will increase steadily with increasing voltage in the so-called active region until the passivating film fonns, at which point the current will rapidly decrease. This behaviour is characteristic of metals that are susceptible to passivation. [Pg.923]

Highly protective layers can also fonn in gaseous environments at ambient temperatures by a redox reaction similar to that in an aqueous electrolyte, i.e. by oxygen reduction combined with metal oxidation. The thickness of spontaneously fonned oxide films is typically in the range of 1-3 nm, i.e., of similar thickness to electrochemical passive films. Substantially thicker anodic films can be fonned on so-called valve metals (Ti, Ta, Zr,. ..), which allow the application of anodizing potentials (high electric fields) without dielectric breakdown. [Pg.2722]

Films, anodic oxide Films, passivating Films, plastic Film theory Film wrappers Filter Filter aid Filter aids Filter fabrics Filtering centrifuges Filter media Filters... [Pg.402]

Fatigue life can be slightly lengthened by anodic protection or by passivation. In acids even passive stainless CrNi steels suffer corrosion fatigue [104]. Resistance can occur if the passive film itself has a fatigue strength (e.g., in neutral waters [105]). [Pg.70]

Besides the use of anodic polarization with impressed current to achieve passivation, raising the cathodic partial current density by special alloying elements and the use of oxidizing inhibitors (and/or passivators) to assist the formation of passive films can be included in the anodic protection method [1-3]. [Pg.464]

Passivating inhibitors act in two ways. First they can reduce the passivating current density by encouraging passive film formation, and second they raise the cathodic partial current density by their reduction. Inhibitors can have either both or only one of these properties. Passivating inhibitors belong to the group of so-called dangerous inhibitors because with incomplete inhibition, severe local active corrosion occurs. In this case, passivated cathodic surfaces are close to noninhibited anodic surfaces. [Pg.475]

Pits occur as small areas of localized corrosion and vary in size, frequency of occurrence, and depth. Rapid penetration of the metal may occur, leading to metal perforation. Pits are often initiated because of inhomogeneity of the metal surface, deposits on the surface, or breaks in a passive film. The intensity of attack is related to the ratio of cathode area to anode ai ea (pit site), as well as the effect of the environment. Halide ions such as chlorides often stimulate pitting corrosion. Once a pit starts, a concentration-cell is developed since the base of the pit is less accessible to oxygen. [Pg.259]

Compared with XPS and AES, the higher surface specificity of SSIMS (1-2 mono-layers compared with 2-8 monolayers) can be useful for more precise determination of the chemistry of an outer surface. Although from details of the 01s spectrum, XPS could give the information that OH and oxide were present on a surface, and from the Cls spectrum that hydrocarbons and carbides were present, only SSIMS could be used to identify the particular hydroxide or hydrocarbons. In the growth of oxide films for different purposes (e.g. passivation or anodization), such information is valuable, because it provides a guide to the quality of the film and the nature of the growth process. [Pg.96]

In practice the danger of aerated systems becomes apparent when the temperature is above. a certain minimum, for there is no passive film formation, and it is clear that anodic protection cannot be effective in these circumstances. [Pg.324]

The dissolution of passive films is, in the main, controlled by a chemical activation step in contrast to film-free conditions at. Many protective anodic films are oxides and hydroxides whose dissolution depends upon the hydrogen ion concentration, and the rate follows a Freundlich adsorption equation ... [Pg.324]

In an aqueous electrolyte, the anodic behaviour of lead vanes greatly depending on the conditions prevailing. Extensive reviews of the anodic behaviour of lead have been produced Under certain conditions, the passive film may be converted to lead dioxide which has an electronic resistivity of 1 - 4 x 10" Ohm cm. Two polymorphs of PbO, exist, a and... [Pg.724]

Recent experience with Pb-6Sb-lAg and Pb/Pt anodes operating in seawater at depths greater than 25 m has revealed a marked increase in consumption rate compared with that found on the surface. Hollandsworth and Littauer" have calculated that on a fully formed anode at 400 Am only 6 X 10 % of the current is used to maintain the passive film, yet at a depth of 180m this percentage increases to 2 x 10 %, and results in a 30-fold increase in consumption rate. They propose that a combination of... [Pg.181]

Thompson,G. E.and Wood,G. C., Anodic Filmson Aluminium , in Corros/on.-/4t7ueous Processes and Passive Films, by J. C. Scully (ed.). Academic Press (1983)... [Pg.705]

Subsequent deposition and dissolution of lithium at the anodically passivated electrode by CV in the range -1000 mV to 6000 mV versus Li was successful, showing that the passivating film at the electrode is only impermeable for the anions, but not for lithium ions however, the amount of lithium deposited decreases, with cycle number. [Pg.478]

CV of solutions of lithium bis[ salicy-lato(2-)]borate in PC shows mainly the same oxidation behavior as with lithium bis[2,2 biphenyldiolato(2-)-0,0 ] borate, i.e., electrode (stainless steel or Au) passivation. The anodic oxidation limit is the highest of all borates investigated by us so far, namely 4.5 V versus Li. However, in contrast to lithium bis[2,2 -biphenyl-diolato(2-)-0,0 Jborate based solutions, lithium deposition and dissolution without previous protective film formation by oxidation of the anion is not possible, as the anion itself is probably reduced at potentials of 620-670 mV versus Li, where a... [Pg.478]

When the boiler is placed back online, certain types of anodic inhibitors (which are generally employed to act as polishing treatments in the maintenance program) also may prove beneficial in further strengthening the passive film. [Pg.171]

As mentioned, corrosion is complexly affected by the material itself and the environment, producing various kinds of surface films, e.g., oxide or hydroxide film. In the above reactions, both active sites for anodic and cathodic reactions are uniformly distributed over the metal surface, so that corrosion proceeds homogeneously on the surface. On the other hand, if those reaction sites are localized at particular places, metal dissolution does not take place uniformly, but develops only at specialized places. This is called local corrosion, pitting corrosion through passive-film breakdown on a metal surface is a typical example. [Pg.218]

In the polarization curve for anodic dissolution of iron in a phosphoric acid solution without CP ions, as shown in Fig. 3, we can see three different states of metal dissolution. The first is the active state at the potential region of the less noble metal where the metal dissolves actively, and the second is the passive state at the more noble region where metal dissolution barely proceeds. In the passive state, an extremely thin oxide film called a passive film is formed on the metal surface, so that metal dissolution is restricted. In the active state, on the contrary, the absence of the passive film leads to the dissolution from the bare metal surface. The difference of the dissolution current between the active and passive states is quite large for a system of an iron electrode in 1 mol m"3 sulfuric acid, the latter value is about 1/10,000 of the former value.6... [Pg.222]

Figure 5 shows the relationship between the passive film thickness of an iron electrode and the electrode potential in an anodic phosphate solution and a neutral borate solution.6,9 A passive film on an iron electrode in acidic solution is made up of an oxide barrier layer that increases its thickness approximately linearly with increasing electrode potential, whereas in a neutral solution, there is a precipitated hydroxide layer with a constant thickness outside the oxide barrier layer. [Pg.225]

Figure 5. Thickness of the anodic passivating film formed on iron at various potentials.6 9 Lbl and Lr, are the thicknesses of the barrier layer and the precipitated layer, respectively. Temperature is 25°C. , in a 150 mol m 3 phosphate buffer solution at pH 1.85 O, in a 300 mol m 3 borate buffer solution at pH 8.2. (From N. Sato, K. Kudo, and T. Noda, Z Phys. Chem. N. F. 98,271,1975, Fig. 5, reproduced with permission and N. Sato, K. Kudo, and R. Nishimura, / Elec-trochem. Soc, 123,1420,1976, Fig. 1. Reproduced with permission of the Electrochemical Society, Inc.)... Figure 5. Thickness of the anodic passivating film formed on iron at various potentials.6 9 Lbl and Lr, are the thicknesses of the barrier layer and the precipitated layer, respectively. Temperature is 25°C. , in a 150 mol m 3 phosphate buffer solution at pH 1.85 O, in a 300 mol m 3 borate buffer solution at pH 8.2. (From N. Sato, K. Kudo, and T. Noda, Z Phys. Chem. N. F. 98,271,1975, Fig. 5, reproduced with permission and N. Sato, K. Kudo, and R. Nishimura, / Elec-trochem. Soc, 123,1420,1976, Fig. 1. Reproduced with permission of the Electrochemical Society, Inc.)...

See other pages where Passive films anodic is mentioned: [Pg.2725]    [Pg.2726]    [Pg.2730]    [Pg.58]    [Pg.412]    [Pg.278]    [Pg.283]    [Pg.208]    [Pg.211]    [Pg.215]    [Pg.216]    [Pg.485]    [Pg.28]    [Pg.123]    [Pg.124]    [Pg.131]    [Pg.638]    [Pg.640]    [Pg.735]    [Pg.767]    [Pg.876]    [Pg.938]    [Pg.159]    [Pg.203]    [Pg.264]    [Pg.272]    [Pg.818]    [Pg.58]    [Pg.440]    [Pg.241]    [Pg.397]   
See also in sourсe #XX -- [ Pg.119 ]

See also in sourсe #XX -- [ Pg.119 ]




SEARCH



Anodic films

Anodic passivation

Anodic passivity

Passivating films

Passivation films

Passive films

Passivity passive films

© 2024 chempedia.info