Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passivation oxidizing agents

Tantalum is not resistant to substances that can react with the protective oxide layer. The most aggressive chemicals are hydrofluoric acid and acidic solutions containing fluoride. Fuming sulfuric acid, concentrated sulfuric acid above 175°C, and hot concentrated aLkaU solutions destroy the oxide layer and, therefore, cause the metal to corrode. In these cases, the corrosion process occurs because the passivating oxide layer is destroyed and the underlying tantalum reacts with even mild oxidising agents present in the system. [Pg.331]

MetaUic cobalt dissolves readily in dilute H2SO4, HCl, or HNO to form cobaltous salts (see also Cobalt compounds). Like iron, cobalt is passivated by strong oxidizing agents, such as dichromates and HNO, and cobalt is slowly attacked by NH OH and NaOH. [Pg.371]

Spontaneous Passivation The anodic nose of the first curve describes the primary passive potential Epp and critical anodic current density (the transition from active to passive corrosion), if the initial active/passive transition is 10 lA/cm or less, the alloy will spontaneously passivate in the presence of oxygen or any strong oxidizing agent. [Pg.2432]

Fig. 1.40 Schematic anodic polarisation curve for a passivatable metal (solid line), shown together with three alternative cathodic reactions (broken line). Open-circuit corrosion potentials are determined by the intersection between the anodic and cathodic reaction rates. Cathode a intersects the anodic curve in the active region and the metal corrodes. Cathode b intersects at three possible points for which the metal may actively corrode or passivate, but passivity could be unstable. Only cathode c provides stable passivity. The lines a, b and c respectively could represent different cathodic reactions of increasing oxidizing power, or they could represent the same oxidizing agent at increasing concentration. Fig. 1.40 Schematic anodic polarisation curve for a passivatable metal (solid line), shown together with three alternative cathodic reactions (broken line). Open-circuit corrosion potentials are determined by the intersection between the anodic and cathodic reaction rates. Cathode a intersects the anodic curve in the active region and the metal corrodes. Cathode b intersects at three possible points for which the metal may actively corrode or passivate, but passivity could be unstable. Only cathode c provides stable passivity. The lines a, b and c respectively could represent different cathodic reactions of increasing oxidizing power, or they could represent the same oxidizing agent at increasing concentration.
Tantalum is severely attacked at ambient temperatures and up to about 100°C in aqueous atmospheric environments in the presence of fluorine and hydrofluoric acids. Flourine, hydrofluoric acid and fluoride salt solutions represent typical aggressive environments in which tantalum corrodes at ambient temperatures. Under exposure to these environments the protective TajOj oxide film is attacked and the metal is transformed from a passive to an active state. The corrosion mechanism of tantalum in these environments is mainly based on dissolution reactions to give fluoro complexes. The composition depends markedly on the conditions. The existence of oxidizing agents such as sulphur trioxide or peroxides in aqueous fluoride environments enhance the corrosion rate of tantalum owing to rapid formation of oxofluoro complexes. [Pg.894]

Because water is a common solvent we might think of it merely as a passive medium in which chemical reactions take place. However, water is a reactive compound, and an alien raised in a nonaqueous environment might consider it aggressively corrosive and be surprised at our survival. For instance, water is an oxidizing agent ... [Pg.755]

Under the effect of oxidizing agents, a metal may become passivated even when not anodically polarized by an external power source. In this case, passivation is evident from the drastic decrease in the rate of spontaneous dissolution of the metal in the solution. The best known example is that of iron passivation in concentrated nitric acid, which had been described by M. V. Lomonosov as early as 1750. Passivation of the metal comes about under the effect of the oxidizing agent s positive redox potentiaf. [Pg.306]

Passivation of the metal and the associated sharp decline of its anodic dissolntion rate have a strong effect on corrosion rates (curve 5 and the point of intersection C in Fig. 22.2b). Passivation is encountered more often under the effect of oxidizing agents (e.g., in the presence of oxygen). [Pg.382]

Sometimes anodic protection is used, in which case the metal s potential is made more positive. The rate of spontaneous dissolution will strongly decrease, rather than increase, when the metal s passivation potential is attained under these conditions. To make the potential more positive, one must only accelerate a coupled cathodic reaction, which can be done by adding to the solution oxidizing agents readily undergoing cathodic reduction (e.g., chromate ions). The rate of cathodic hydrogen evolution can also be accelerated when minute amounts of platinum metals, which have a stroug catalytic effect, are iucorporated iuto the metaf s surface fayer (Tomashov, 1955). [Pg.385]

Passive oxidation of mine water from the Maude Mine removes up to 98% of the contained As through precipitation of ferrihydrite and scavenging of As from solution. The remaining arsenic in the water can be removed by the use of the coagulating agents poly-aluminium chloride or ferric chloride. [Pg.66]

Etching of silicon in alkaline solutions occurs under evolution of hydrogen with a ratio of two molecules H2 per dissolved Si atom. This ratio is found to be reduced under positive bias [Pa6] or by addition of oxidizing agents like H202 [Sc6], If the anodic bias is increased beyond the passivation potential (PP), the dissolution rate is reduced by orders of magnitude. [Pg.28]

A sufficiently anodic bias and the availability of holes are the two necessary conditions for the dissolution of silicon aqueous HF. In this case the Si dissolution rate is proportional to the current density divided by the dissolution valence. In all other cases silicon is passivated in HF this is the case under OCP, or under cathodic conditions, or under anodic conditions if the sample is moderately n-type doped and kept in the dark. If an oxidizing agent like HN03 is added silicon will already dissolve at OCP, but the dissolution rate remains bias dependent. If an anodic bias is applied the dissolution rate will be enhanced, whereas a cathodic bias effectively decreases the rate of dissolution. [Pg.69]

Surfaces of transition metals that have been passivated by electrochemical oxidation or by the action of chemical oxidizing agents have been extensively investigated by in situ STM/AFM these investigations... [Pg.271]

This makes clear how the oil-sealed pump is protected against corrosion the concentration of the oxidation agent in the oil is negligible and thus the opportunity for the metal to release electrons is equally small. This also makes it clear that the use of so-called non-rusting or stainless steels does not make sense since oxidation is necessary for the passivation of these steels, in order to reach the so-called passive region for these steel compounds. The aitical passivation current density will normally not appear in oil-sealed pumps. [Pg.141]

Nitric acid is a colourless liquid at room temperature and atmospheric pressure. It is soluble in water in all proportions and there is a release of heat of solution upon dilution. This solubility has tended to shape the process methods for commercial nitric acid manufacture. It is a strong acid that almost completely ionizes when in dilute solution. It is also a powerful oxidizing agent with the ability to passivate some metals such as iron and aluminium. A compilation of many of the physical and chemical properties of nitric acid is presented in Table A.1 of Appendix A. Arguably the most important physical property of nitric acid is its azeotropic point, this influences the techniques associated with strong acid production. The constant-boiling mixture occurs at 121.9°C, for a concentration of 68.4%(wt) acid at atmospheric pressure. [Pg.6]


See other pages where Passivation oxidizing agents is mentioned: [Pg.52]    [Pg.58]    [Pg.52]    [Pg.58]    [Pg.98]    [Pg.297]    [Pg.433]    [Pg.2430]    [Pg.2431]    [Pg.61]    [Pg.475]    [Pg.481]    [Pg.484]    [Pg.1005]    [Pg.120]    [Pg.121]    [Pg.136]    [Pg.137]    [Pg.815]    [Pg.307]    [Pg.308]    [Pg.19]    [Pg.20]    [Pg.35]    [Pg.63]    [Pg.432]    [Pg.2]    [Pg.492]    [Pg.494]    [Pg.507]    [Pg.187]    [Pg.414]    [Pg.312]    [Pg.269]    [Pg.433]    [Pg.280]   
See also in sourсe #XX -- [ Pg.162 , Pg.163 ]




SEARCH



Oxidation agent

Oxidation oxidizing agent

Oxidizing agents

Oxidizing agents oxidants

Passivating agents

Passivating oxide

Passive oxidation

© 2024 chempedia.info