Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle unstable

The stability of a nucleus depends on the ratio of neutrons to protons. Some nuclei are unstable and undergo spontaneous nuclear disintegration accompanied by emission of particles. Unstable isotopes of this type are called radioisotopes. Three main types of radiation are emitted during nuclear decay a particles, j8 particles, and y rays. The a particle, a helium nucleus, is emitted only by elements of mass number greater than 140. These elements are seldom used in biochemical research. [Pg.172]

Water-based fluorescent particles can also be used, but their RI differs considerably from that of water, limiting observation in the bulk. The RI of water can be modified by adding salts [51], but the concentrations required are exceptionally high, making most particles unstable against van der Waals attraction. [Pg.172]

In order to estimate the contribution from the main contaminants in the target, the reactions 12C(nB, 140)9Li and 160(nB, 140) 13B have been measured. These measurements have shown that the contribution from both of the above-mentioned reactions to the 140 spectrum does not exceed 5% of the peak height. In order to estimate the yield under the observed bump the phase space contribution has been subtracted from the experimental data. The resulting value of the cross section under the peak is da/dil = 16 nb/sr. Such an evaluation is of course affected by some uncertainty. A 50% error of this estimate is quite possible. The peak has been attributed to the level of particle unstable 6H lying 2.6 0.5 MeV above the 2H+n + n + n mass and having a width of 1.3 0.5 MeV. This value agrees well with that found in, 3). The difference in cross sections can be explained as due to the use of the 3p transfer reaction in our experiment instead of the 2p-n reaction studied in ref.l3). [Pg.8]

The probable occurrence of a T = f state in Li at about 15 MeV above the ground state suggests that the nucleus He is unstable with respect to Li by something of this order. This nucleus would be heavy particle unstable (He + or He + 3 6 has not been observed. [Pg.156]

Oil that is deposited on a water-insoluble hydrogel, such as agar and con-nyaku, can be readily separated. This is because the water film on the hydrogel surface inhibits adhesion of oil onto the gel networks. Based on this mechanism shown as model 2) in Fig. 1, the authors attempted separation of collected oil by making the substrate of coalesced oil particles unstable. [Pg.1275]

Systems involving an interface are often metastable, that is, essentially in equilibrium in some aspects although in principle evolving slowly to a final state of global equilibrium. The solid-vapor interface is a good example of this. We can have adsorption equilibrium and calculate various thermodynamic quantities for the adsorption process yet the particles of a solid are unstable toward a drift to the final equilibrium condition of a single, perfect crystal. Much of Chapters IX and XVII are thus thermodynamic in content. [Pg.2]

Clusters are intennediates bridging the properties of the atoms and the bulk. They can be viewed as novel molecules, but different from ordinary molecules, in that they can have various compositions and multiple shapes. Bare clusters are usually quite reactive and unstable against aggregation and have to be studied in vacuum or inert matrices. Interest in clusters comes from a wide range of fields. Clusters are used as models to investigate surface and bulk properties [2]. Since most catalysts are dispersed metal particles [3], isolated clusters provide ideal systems to understand catalytic mechanisms. The versatility of their shapes and compositions make clusters novel molecular systems to extend our concept of chemical bonding, stmcture and dynamics. Stable clusters or passivated clusters can be used as building blocks for new materials or new electronic devices [4] and this aspect has now led to a whole new direction of research into nanoparticles and quantum dots (see chapter C2.17). As the size of electronic devices approaches ever smaller dimensions [5], the new chemical and physical properties of clusters will be relevant to the future of the electronics industry. [Pg.2388]

Atoms with the same number of protons but a different number of neutrons are called isotopes. To identify an isotope we use the symbol E, where E is the element s atomic symbol, Z is the element s atomic number (which is the number of protons), and A is the element s atomic mass number (which is the sum of the number of protons and neutrons). Although isotopes of a given element have the same chemical properties, their nuclear properties are different. The most important difference between isotopes is their stability. The nuclear configuration of a stable isotope remains constant with time. Unstable isotopes, however, spontaneously disintegrate, emitting radioactive particles as they transform into a more stable form. [Pg.642]

The most important types of radioactive particles are alpha particles, beta particles, gamma rays, and X-rays. An alpha particle, which is symbolized as a, is equivalent to a helium nucleus, fHe. Thus, emission of an alpha particle results in a new isotope whose atomic number and atomic mass number are, respectively, 2 and 4 less than that for the unstable parent isotope. [Pg.642]

Emission of an alpha or beta particle often produces an isotope in an unstable, high-energy state. This excess energy is released as a gamma ray, y, or an X-ray. Gamma ray and X-ray emission may also occur without the release of alpha or beta particles. [Pg.642]

The enthalpy of the copolymerization of trioxane is such that bulk polymerization is feasible. For production, molten trioxane, initiator, and comonomer are fed to the reactor a chain-transfer agent is in eluded if desired. Polymerization proceeds in bulk with precipitation of polymer and the reactor must supply enough shearing to continually break up the polymer bed, reduce particle size, and provide good heat transfer. The mixing requirements for the bulk polymerization of trioxane have been reviewed (22). Raw copolymer is obtained as fine emmb or flake containing imbibed formaldehyde and trioxane which are substantially removed in subsequent treatments which may be combined with removal of unstable end groups. [Pg.58]

Bubbles can grow to on the order of a meter in diameter in Group B powders in large beds. The maximum stable bubble size is limited by the size of the vessel or the stabiUty of the bubble itself. In large fluidized beds, the limit to bubble growth occurs when the roof of the bubble becomes unstable and the bubble spHts. EmpidcaHy, it has been found that the maximum stable bubble size may be calculated for Group A particles from... [Pg.76]

Precipitation Hardening. With the exception of ferritic steels, which can be hardened either by the martensitic transformation or by eutectoid decomposition, most heat-treatable alloys are of the precipitation-hardening type. During heat treatment of these alloys, a controlled dispersion of submicroscopic particles is formed in the microstmeture. The final properties depend on the manner in which particles are dispersed, and on particle size and stabiUty. Because precipitation-hardening alloys can retain strength at temperatures above those at which martensitic steels become unstable, these alloys become an important, in fact pre-eminent, class of high temperature materials. [Pg.114]

Once the precipitates grow beyond a critical size they lose coherency and then, in order for deformation to continue, dislocations must avoid the particles by a process known as Orowan bowing(23). This mechanism appHes also to alloys strengthened by inert dispersoids. In this case a dislocation bends between adjacent particles until the loop becomes unstable, at which point it is released for further plastic deformation, leaving a portion behind, looped around the particles. The smaller the interparticle spacing, the greater the strengthening. [Pg.114]

Radioactivity occurs naturally in earth minerals containing uranium and thorium. It also results from two principal processes arising from bombardment of atomic nuclei by particles such as neutrons, ie, activation and fission. Activation involves the absorption of a neutron by a stable nucleus to form an unstable nucleus. An example is the neutron reaction of a neutron and cobalt-59 to yield cobalt-60 [10198 0-0] Co, a 5.26-yr half-life gamma-ray emitter. Another is the absorption of a neutron by uranium-238 [24678-82-8] to produce plutonium-239 [15117 8-5], Pu, as occurs in the fuel of a nuclear... [Pg.228]

Tricalcium phosphate, Ca2(P0 2> is formed under high temperatures and is unstable toward reaction with moisture below 100°C. The high temperature mineral whidockite [64418-26-4] although often described as P-tricalcium phosphate, is not pure. Whidockite contains small amounts of iron and magnesium. Commercial tricalcium phosphate prepared by the reaction of phosphoric acid and a hydrated lime slurry consists of amorphous or poody crystalline basic calcium phosphates close to the hydroxyapatite composition and has a Ca/P ratio of approximately 3 2. Because this mole ratio can vary widely (1.3—2.0), free lime, calcium hydroxide, and dicalcium phosphate may be present in variable proportion. The highly insoluble basic calcium phosphates precipitate as fine particles, mosdy less than a few micrometers in diameter. The surface area of precipitated hydroxyapatite is approximately... [Pg.334]

Sediment Volume. If the dispersion is unstable, the sediment bed will be quite deep and sedimenting particles will stick together where they first strike the sediment bed, thus forming an open stmcture with considerable occluded Hquid. If the dispersion is stable to reagglomeration, the particles will move freely past one another to avoid contact as long as possible. The result is a thin sediment bed with maximum soHds packing and minimum occluded hquid (12). Since dispersed particles setde more slowly than docs, centrifugation maybe needed to force sedimentation of small particles within a reasonable analysis time. [Pg.549]

Copper Hydroxide. Copper(II) hydroxide [20427-59-2] Cu(OH)2, produced by reaction of a copper salt solution and sodium hydroxide, is a blue, gelatinous, voluminous precipitate of limited stabiUty. The thermodynamically unstable copper hydroxide can be kiaetically stabilized by a suitable production method. Usually ammonia or phosphates ate iacorporated iato the hydroxide to produce a color-stable product. The ammonia processed copper hydroxide (16—19) is almost stoichiometric and copper content as high as 64% is not uncommon. The phosphate produced material (20,21) is lower ia copper (57—59%) and has a finer particle size and higher surface area than the ammonia processed hydroxide. Other methods of production generally rely on the formation of an iasoluble copper precursor prior to the formation of the hydroxide (22—26). [Pg.254]

Tritium [15086-10-9] the name given to the hydrogen isotope of mass 3, has symbol or more commonly T. Its isotopic mass is 3.0160497 (1). Moletecular tritium [10028-17-8], is analogous to the other hydrogen isotopes. The tritium nucleus is energetically unstable and decays radioactively by the emission of a low-energy P particle. The half-life is relatively short (- 12 yr), and therefore tritium occurs in nature only in equiUbrium with amounts produced by cosmic rays or man-made nuclear devices. [Pg.12]

Fluidized This is an expanded condition in which the sohds particles are supported by drag forces caused by the gas phase passing through the interstices among the particles at some critical velocity. It is an unstable condition in that the superficial gas velocity upward is less than the terminal setting velocity of the solids particles the gas... [Pg.1173]

High matrix rigidity is offered by porous sihca, which can be deriva-tized to enhance its compatibility with proteins, but it is unstable at alkaline pH. Hydroxyapatite particles have high selectivity for a wide range of proteins and nucleic acids. [Pg.2064]


See other pages where Particle unstable is mentioned: [Pg.126]    [Pg.31]    [Pg.51]    [Pg.5]    [Pg.291]    [Pg.126]    [Pg.31]    [Pg.51]    [Pg.5]    [Pg.291]    [Pg.351]    [Pg.300]    [Pg.150]    [Pg.241]    [Pg.315]    [Pg.142]    [Pg.229]    [Pg.349]    [Pg.350]    [Pg.114]    [Pg.204]    [Pg.337]    [Pg.450]    [Pg.549]    [Pg.113]    [Pg.298]    [Pg.477]    [Pg.118]    [Pg.244]    [Pg.260]    [Pg.163]    [Pg.679]    [Pg.2173]   
See also in sourсe #XX -- [ Pg.360 ]




SEARCH



Unstability

Unstable

© 2024 chempedia.info