Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partial propene

A more efficient agent than peroxy compounds for the epoxidation of fluoro-olefins with nonfluonnated double bond is the hypofluorous acid-acetomtrile complex [22] Perfluoroalkylethenes react with this agent at room temperature within 2-3 h with moderate yields (equation 13), whereas olefins with strongly electron-deficient double bond or electron-poor, sterically hindered olefins, for example l,2-bis(perfluorobutyl)ethene and perfluoro-(l-alkylethyl)ethenes, are practically inert [22] Epoxidation of a mixture of 3 perfluoroalkyl-1-propenes at 0 C IS finished after 10 mm in 80% yield [22] The trifluorovinyl group in partially fluorinated dienes is not affected by this agent [22] (equation 13)... [Pg.326]

Compare the geometry of maleic anhydride+propene, the ene transition state, to those of the reactants (maleic anhydride and propene). Is bond making and breaking occurring at once In particular, is the migrating hydrogen partially bonded to two carbons (rather than being fully bonded to one carbon ) Draw a Lewis structure to represent the transition state. Use dashed lines (.. and to represent partial bonds. [Pg.279]

The low ee values probably derive from partial racemization of the 3-(4-methylphcnylsu finyl)-l-propene prior to reaction. b Temperature 21 °C. [Pg.929]

Olivier and Berger335, who measured the first-order rate coefficients for the aluminium chloride-catalysed reaction of 4-nitroben2yl chloride with excess aromatic (solvent) at 30 °C and obtained the rate coefficients (lO5/ ) PhCI, 1.40 PhH, 7.50 PhMe, 17.5. These results demonstrated the electrophilic nature of the reaction and also the unselective nature of the electrophile which has been confirmed many times since. That the electrophile in these reactions is not the simple and intuitively expected free carbonium ion was indicated by the observation by Calloway that the reactivity of alkyl halides was in the order RF > RC1 > RBr > RI, which is the reverse of that for acylation by acyl halides336. The low selectivity (and high steric hindrance) of the reaction was further demonstrated by Condon337 who measured the relative rates at 40 °C, by the competition method, of isopropylation of toluene and isopropylbenzene with propene catalyzed by boron trifluoride etherate (or aluminium chloride) these were as follows PhMe, 2.09 (1.10) PhEt, 1.73 (1.81) Ph-iPr, (1.69) Ph-tBu, 1.23 (1.40). The isomer distribution in the reactions337,338 yielded partial rate factors of 2.37 /mMe, 1.80 /pMe, 4.72 /, 0.35 / , 2.2 / Pr, 2.55337 339. [Pg.140]

As is outlined for ene reactions of singlet oxygen in Scheme 15, the prototypical ene reaction starts with the electron delocalization from the HOMO of propene to the LUMO of X=Y. The delocalization from the HOMO, a combined n and orbital with larger amplitude on n, leads to a bond formation between the C=C and X=Y bonds. Concurrent elongation of the bond enables a six-membered ring transition stracture, where partial electron density is back-donated from the LUMO of X=Y having accepted the density, to an unoccupied orbital of propene localized on the bond. As a result, the partial electron density is promoted (pseudoex-cited) from the HOMO (it) to an unoccupied orbital (ct n ) of alkenes. This is a reaction in the pseudoexcitation band. [Pg.50]

Small olefins, notably ethylene (ethene), propene, and butene, form the building blocks of the petrochemical industry. These molecules originate among others from the FCC process, but they are also manufactured by the steam cracking of naphtha. A wealth of reactions is based on olefins. As examples, we discuss here the epoxida-tion of ethylene and the partial oxidation of propylene, as well as the polymerization of ethylene and propylene. [Pg.370]

However, in the same temperature range and O2 partial pressure total oxidation of acrolein and propene largely predominates. This can be taken as a further support that on transition metal oxide catalysts the same oxygen species (lattice oxygen) are involved in both partial and total oxidation. [Pg.486]

Propyhdyne formed from propene on lr4 supported on y-Al203 was observed by IR and NMR spectroscopies [38]. When ethene or propene was brought in contact with oxide-supported lr4 [39,40], Ire [39,40], or Rhe (A.M. Argo and B.C. Gates BC, impubhshed results) in the presence of H2, hydrocarbon hgands were formed (namely, alkyls and /r-bonded alkenes), which have been inferred from IR spectra to be intermediates in hydrogenation to make alkanes, as discussed later. The population of these hydrocarbon ligands on the supported clusters depends sensitively on the conditions, such as reactant partial pressures and temperature. [Pg.224]

Propene is an intermediate utilized in the chemical and pharmaceutical industries. The partial oxidation of propene on cuprous oxide (CU2O) yields acrolein as a thermodynamically imstable intermediate, and hence has to be performed under kinetically controlled conditions [37]. Thus in principle it is a good test reaction for micro reactors. The aim is to maximize acrolein selectivity while reducing the other by-products CO, CO2 and H2O. Propene may also react directly to give these products. The key to promoting the partial oxidation at the expense of the total oxidation is to use the CU2O phase and avoid having the CuO phase. [Pg.316]

GP 6] [R 5] With a stabilized CU2O catalyst layer, by addition of bromomethane (ppm level), 20% selectivity at 5% conversion was found (0.5 vol.-% propene 0.1 vol.-% oxygen 2.25 ppm promoter 350 °C) [37]. This is far better than with non-conditioned copper oxide catalysts which contain CuO besides CU2O. It is expected that the first species promotes more total oxidation, whereas the latter steers partial oxidation. In the above experiment, selectivity rises from 7 to 30% at slightly reduced conversion after 3 h of promoter conditioning. [Pg.317]

Together with the fast oxidation (at low temperatures) of NO to N02, the plasma causes the partial HC oxidation (using propylene, the formation of CO, C02, acetaldehyde and formaldehyde was observed). Both the effects cause a large promotion in activity of the downstream catalyst [86]. For example, a "/-alumina catalyst which is essentially inactive in the SCR of NO with propene at temperatures 200°C allows the conversion of NO of about 80% (in the presence of NTP). Formation of aldehydes follows the trend of NO concentration suggesting their role in the reaction mechanism. Metal oxides such as alumina, zirconia or metal-containing zeolites (Ba/Y, for example) have been used [84-87], but a systematic screening of the catalysts to be used together with NTP was not carried out. Therefore, considerable improvements may still be expected. [Pg.17]

Vanadia catalysts exhibit high activity and selectivity for numerous oxidation reactions. The reactions are partial oxidation of methane and methanol to formaldehyde, and oxidative dehydrogenation of propane to propene and ethane to ethcnc.62 62 The catalytic activity and selectivity of... [Pg.54]

Numerous chemical intermediates are oxygen rich. Methanol, acetic acid and ethylene glycol show a O/C atomic ratio of 1, as does biomass. Other major chemicals intermediates show a lower O/C ratio, typically between 1/3 and 2/3. This holds for instance for propene and butene glycols, ethanol, (meth)acrylic acids, adipic acid and many others. The presence of some oxygen atoms is required to confer the desired physical and chemicals properties to the product. Selective and partial deoxygenation of biomass may represent an attractive and competitive route compared with the selective and partial oxidation of hydrocarbon feedstock. [Pg.28]

Most industrially desirahle oxidation processes target products of partial, not total oxidation. Well-investigated examples are the oxidation of propane or propene to acrolein, hutane to maleic acid anhydride, benzene to phenol, or the ammoxidation of propene to acrylonitrile. The mechanism of many reactions of this type is adequately described in terms of the Mars and van Krevelen modeE A molecule is chemisorbed at the surface of the oxide and reacts with one or more oxygen ions, lowering the electrochemical oxidation state of the metal ions in the process. After desorption of the product, the oxide reacts with O2, re-oxidizing the metal ions to their original oxidation state. The selectivity of the process is determined by the relative chances of... [Pg.147]

Example The transfer of a D compared to the transfer of an H during propene loss from partially labeled phenylproylethers is accompanied by an isotope effect, the approximate magnitude of which was estimated as follows [74]... [Pg.42]

In the first kinetic experiments, the substrate concentration was varied by changing the propene partial pressure in the feed gas (at constant total pressure) between 0.9-3.2bar at temperatures in the range 65-140 °C. The rate... [Pg.155]

Next, the residence time inside the catalyst bed was varied by altering the total reactant flow at a constant propene partial pressure of 2.1 bar. The selectivity for the desired hnear aldehyde was only influenced by temperature and not by residence time. Shorter residence times generally resulted in lower conversions, as expected. However, under non-differential conditions at higher conversions the observed TOFs decreased shghtly with longer residence times, due to lower mean levels of propene present in the reactor. [Pg.156]


See other pages where Partial propene is mentioned: [Pg.50]    [Pg.177]    [Pg.485]    [Pg.485]    [Pg.488]    [Pg.489]    [Pg.517]    [Pg.520]    [Pg.94]    [Pg.357]    [Pg.20]    [Pg.104]    [Pg.57]    [Pg.104]    [Pg.399]    [Pg.386]    [Pg.17]    [Pg.41]    [Pg.146]    [Pg.289]    [Pg.30]    [Pg.215]    [Pg.192]    [Pg.132]    [Pg.303]    [Pg.198]    [Pg.156]    [Pg.48]    [Pg.54]    [Pg.69]    [Pg.294]    [Pg.208]   
See also in sourсe #XX -- [ Pg.316 ]




SEARCH



In propene partial oxidation

Propene, partial oxidation

© 2024 chempedia.info