Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium indole

The development of methods for aromatic substitution based on catalysis by transition metals, especially palladium, has led to several new methods for indole synthesis. One is based on an intramolecular Heck reaction in which an... [Pg.35]

Lithiation at C2 can also be the starting point for 2-arylatioii or vinylation. The lithiated indoles can be converted to stannanes or zinc reagents which can undergo Pd-catalysed coupling with aryl, vinyl, benzyl and allyl halides or sulfonates. The mechanism of the coupling reaction involves formation of a disubstituted palladium intermediate by a combination of ligand exchange and oxidative addition. Phosphine catalysts and salts are often important reaction components. [Pg.98]

There are also palladium-catalysed procedures for allylation. Ethyl 3-bromo-l-(4-methylphenylsulfonyl)indole-2-carboxylate is allylated at C3 upon reaction with allyl acetate and hexabutylditin[27], Ihe reaction presumably Involves a ir-allyl-Pd intermediate formed from the allyl acetate, oxidative addition, transmetallation and cross coupling. [Pg.108]

The best procedures for 3-vinylation or 3-arylation of the indole ring involve palladium intermediates. Vinylations can be done by Heck reactions starting with 3-halo or 3-sulfonyloxyindoles. Under the standard conditions the active catalyst is a Pd(0) species which reacts with the indole by oxidative addition. A major con.sideration is the stability of the 3-halo or 3-sulfonyloxyindoles and usually an EW substituent is required on nitrogen. The range of alkenes which have been used successfully is quite broad and includes examples with both ER and EW substituents. Examples are given in Table 11.3. An alkene which has received special attention is methyl a-acetamidoacrylate which is useful for introduction of the tryptophan side-chain. This reaction will be discussed further in Chapter 13. [Pg.109]

Indoles with carbocyclic halogen or triflate substituents are potential starting materials for vinylation, arylation and acylation via palladium-catalysed pro-cesses[l]. Indolylstannanes. indolylzinc halides and indolylboronic acids are also potential reactants. The principal type of substitution which is excluded from such coupling reactions is alkylation, since saturated alkyl groups tend to give elimination products in Pd-catalysed processes. [Pg.141]

Transition-Metal Catalyzed Cyclizations. o-Halogenated anilines and anilides can serve as indole precursors in a group of reactions which are typically cataly2ed by transition metals. Several catalysts have been developed which convert o-haloanilines or anilides to indoles by reaction with acetylenes. An early procedure involved coupling to a copper acetyUde with o-iodoaniline. A more versatile procedure involves palladium catalysis of the reaction of an o-bromo- or o-trifluoromethylsulfonyloxyanihde with a triaLkylstaimylalkyne. The reaction is conducted in two stages, first with a Pd(0) and then a Pd(II) catalyst (29). [Pg.87]

There are reports of an increasing number of palladium-assisted reactions, in some of which the palladium has a catalytic function. Thus furan and thiophene undergo facile palladium-assisted alkenylation giving 2-substituted products. Benzo[6 Jfuran and TV- acetyl-indole yield cyclization products, dibenzofurans and carbazoles respectively, in addition to alkenylated products (8UOC851). The arylation of pyrroles can be effected by treatment with palladium acetate and an arene (Scheme 86) (81CC254). [Pg.83]

As foretold in the introduction, ring formation via attack on a double bond in the endo-trig mode is not well exemplified. The palladium(II) catalyzed oxidative cyclization of o-aminostyrenes to indoles has been described (78JA5800). The treatment of o-methyl-selenocinnamates with bromine in pyridine gives excellent yields of benzoselenophene-2-carboxylates (Scheme 10a) (77BSF157). The base promoted conversion of dienoic thioamides to 2-aminothiophenes is another synthetically useful example of this type (Scheme 10b) (73RTC1331). [Pg.95]

Treatment of 1-azirine (292) with eatalytie quantities of diehlorobis(benzonitrile)pal-ladium(II) gave a quantitative yield of the indole (293) (77CC664). This transformation proeeeds through the intermediaey of a 2 1 azirine-palladium ehloride eomplex. Conversion of the 1-azirine ring to indoles under uneatalyzed thermolytie eonditions provides a meehanistieally interesting eomparison with the Pd(II)-eatalyzed eonversions. The C—N bond eleavage in the latter is apparently aeeelerated as a result of the eoordination of the azirine to palladium. [Pg.76]

The Hegedus indole synthesis involves one of the earlier (formal) examples of olefin hydroamination. An ortho-vinyl or ortho-nllyl aniline derivative 1 is treated with palladium(II) to deliver an intermediate resulting from alkene aminopalladation. Subsequent reduction and/or isomerization steps then provide the indoline or indole unit 2, respectively. [Pg.135]

Hi) Dehydrogenation. j3-Carboline derivatives may be obtained from tetrahydro-)3-carbohnes by zinc dust distillation or high temperatmre dehydrogenation with selenium or palladium black. Many of the complex indole alkaloids may be degraded, with bond cleavage, to yield simple )3-carbolines under these conditions and this approach has become a standard method in structural elucidations. Examples are numerous but outside the scope of this review. [Pg.139]

Palladium dehydrogenation of the hexahydro-jS-carboline derivative dihydrodesoxyajmaline (381) yielded, among other degradation products which included fully aromatic )3-carboline derivatives, the two substituted indoles 382 and 383. ... [Pg.176]

Bromination of the diphenyl indole derivative 316 with bromine in DMF or trimethylammonium bromide afforded the 7-bromo derivative 317. Reaction with allyl bromide or its derivatives gave A-allyl derivatives 318 that upon cyclization with palladium acetate gave 7,9-dimethoxy-l,2-diphenylpyrrolo[3,2,l-// ]quinoline derivatives 319 (92T7601) (Scheme 57). [Pg.111]

Soderberg and coworkers have developed a palladium-phosphine-catalyzed reductive iV-het-eroannuladon of 2-nitrostyrenes forming indoles in good yields For example, reaction of 6-bromo-2-nitrostyrene with carbon monoxide in the presence of a catalytic amount of palladium diacetate (6 mol% and triphenylphosphine 124 mol% in acetonitrile at 30 gives 4-bromoindole in 86% yield fEq 10 62 Several functional groups, such as esters, ethers, bromides, tnflates, and additional nitro groups, have been shown to be compatible with the reaction conditions... [Pg.343]

A novel route to indoles and quinolines has been developed by sequential Wiltig and Heck reactions <96CC2253>. Thus, treatment of o-bromo- or iodo-lV-lrifluoroaceiylanilines (86) with a stabilized phosphorane affords the corresponding enamines 87 as a mixture of isomers. Cyclization to 88 is effected by heating with palladium acetate, tri phenyl phosphine, and bu.se. [Pg.106]

IH of 2-alkynylanihnes has been also studied in the presence of molybdenum [284], palladium [276, 277, 281], and gold catalysts [276]. It provides indoles in low to good yields as a result of 5-Endo-Dig cyclizations (Eq. 4.73) [277]. [Pg.122]

Palladium-catalyzed substitution can also be applied to nonbasic nitrogen heterocycles, such as indoles, in the absence of strong bases. [Pg.1048]

Rizatriptan (Maxalt ) A 5-HTm Receptor Agonist 4.1.2.2 Palladium-Catalyzed Indole Synthesis... [Pg.122]

Thus far, we have discovered and demonstrated a new and effident method for the synthesis of indoles from various carbonyl compounds. This, in conjunction with the use of alkyries in the palladium-catalyzed indolization, widens the spectrum of indoles that can be prepared by these means. The simple procedure, mild reaction conditions, and ready availability of the starting materials render these methods valuable additions to indole chemistry. We next extended this method to the synthesis of the indole core of a PGD2 receptor antagonist, laropiprant 3. [Pg.139]


See other pages where Palladium indole is mentioned: [Pg.85]    [Pg.85]    [Pg.57]    [Pg.8]    [Pg.101]    [Pg.111]    [Pg.85]    [Pg.61]    [Pg.107]    [Pg.737]    [Pg.510]    [Pg.5]    [Pg.144]    [Pg.150]    [Pg.152]    [Pg.44]    [Pg.113]    [Pg.291]    [Pg.105]    [Pg.106]    [Pg.1452]    [Pg.105]    [Pg.106]    [Pg.21]    [Pg.61]    [Pg.118]    [Pg.122]    [Pg.126]    [Pg.128]    [Pg.141]   
See also in sourсe #XX -- [ Pg.83 , Pg.87 , Pg.88 , Pg.93 ]




SEARCH



© 2024 chempedia.info