Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium complexes oxidation

The nickel or cobalt catalyst causes isomerization of the double bond resulting in a mixture of C-19 isomers. The palladium complex catalyst produces only the 9-(10)-carboxystearic acid. The advantage of the hydrocarboxylation over the hydroformylation reaction is it produces the carboxyUc acids in a single step and obviates the oxidation of the aldehydes produced by hydroformylation. [Pg.63]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

In the direct coupling reaction (Scheme 30), it is presumed that a coordinatively unsaturated 14-electron palladium(o) complex such as bis(triphenylphosphine)palladium(o) serves as the catalytically active species. An oxidative addition of the organic electrophile, RX, to the palladium catalyst generates a 16-electron palladium(n) complex A, which then participates in a transmetalation with the organotin reagent (see A—>B). After facile trans- cis isomerization (see B— C), a reductive elimination releases the primary organic product D and regenerates the catalytically active palladium ) complex. [Pg.592]

In 2003, Sigman et al. reported the use of a chiral carbene ligand in conjunction with the chiral base (-)-sparteine in the palladium(II) catalyzed oxidative kinetic resolution of secondary alcohols [26]. The dimeric palladium complexes 51a-b used in this reaction were obtained in two steps from N,N -diaryl chiral imidazolinium salts derived from (S, S) or (R,R) diphenylethane diamine (Scheme 28). The carbenes were generated by deprotonation of the salts with t-BuOK in THF and reacted in situ with dimeric palladium al-lyl chloride. The intermediate NHC - Pd(allyl)Cl complexes 52 are air-stable and were isolated in 92-95% yield after silica gel chromatography. Two diaster corners in a ratio of approximately 2 1 are present in solution (CDCI3). [Pg.208]

Following this pnblication, the anthors tested a series of Pd-NHC complexes (33-36) for the oxidative carbonylation of amino compounds (Scheme 9.8) [44,45]. These complexes catalysed the oxidative carbonylation of amino compounds selectively to the nreas with good conversion and very high TOFs. Unlike the Cu-NHC catalyst 38-X, the palladium complexes catalysed the oxidative carbonylation of a variety of aromatic amines. For example, 35 converted d-Me-C H -NH, d-Cl-C H -NH, 2,4-Me3-C H3-NH3, 2,6-Me3-C H3-NH3, and 4-Ac-C H3-NH3 to the corresponding nreas with very high TOFs (>6000) in 1 h at 150°C, in 99%, 87%, 85%, 72%, and 60% isolated yields, respectively (Pco,o2 = 3.2/0.8 MPa). [Pg.228]

NMR monitoring of the reaction of the palladium complex with 1-octyne suggested that the alkyne inserts into the Pd-H bond. Further heating produced a mixture of the two regioisomeric alkenylphosphine oxides, the anti-Markovnikov adduct being the favored product (54 46, 65% yield). [Pg.156]

The proposed mechanism (Scheme 7-11) includes (a) oxidative addition of a pro-tonated alcohol to Pd(0) to provide the ir-allyl palladium complex 44, (b) nucleophilic replacement of H2O by PhSH, (c) insertion of CO into the Pd-C bond, and (d) re-... [Pg.230]

Some of the details of the mechanism may differ for various catalytic systems. There have been kinetic studies on two of the amination systems discussed here. The results of a study of the kinetics of amination of bromobenzene using Pd2(dba)3, BINAP, and sodium r-amyloxide in toluene were consistent with the oxidative addition occurring after addition of the amine at Pd. The reductive elimination is associated with deprotonation of the animated palladium complex.166... [Pg.1046]

Recently, great advancement has been made in the use of air and oxygen as the oxidant for the oxidation of alcohols in aqueous media. Both transition-metal catalysts and organocatalysts have been developed. Complexes of various transition-metals such as cobalt,31 copper [Cu(I) and Cu(II)],32 Fe(III),33 Co/Mn/Br-system,34 Ru(III and IV),35 and V0P04 2H20,36 have been used to catalyze aerobic oxidations of alcohols. Cu(I) complex-based catalytic aerobic oxidations provide a model of copper(I)-containing oxidase in nature.37 Palladium complexes such as water-soluble Pd-bathophenanthroline are selective catalysts for aerobic oxidation of a wide range of alcohols to aldehydes, ketones, and carboxylic acids in a biphasic... [Pg.150]

The mechanism for the reaction catalyzed by cationic palladium complexes (Scheme 24) differs from that proposed for early transition metal complexes, as well as from that suggested for the reaction shown in Eq. 17. For this catalyst system, the alkene substrate inserts into a Pd - Si bond a rather than a Pd-H bond [63]. Hydrosilylation of methylpalladium complex 100 then provides methane and palladium silyl species 112 (Scheme 24). Complex 112 coordinates to and inserts into the least substituted olefin regioselectively and irreversibly to provide 113 after coordination of the second alkene. Insertion into the second alkene through a boat-like transition state leads to trans cyclopentane 114, and o-bond metathesis (or oxidative addition/reductive elimination) leads to the observed trans stereochemistry of product 101a with regeneration of 112 [69]. [Pg.241]

Palladium complexes are effective catalysts for the reductive cydization of enyne substrates [53,54], The first report of catalytic cydization of 1,6- and 1,7-enynes 115a,b to cyclopentane 116a and cyclohexane 116b derivatives appeared in 1987 (Eq. 19) [70]. The authors proposed that the Pd(II) species 117 forms by oxidative addition of acetic acid to Pd(0) (Scheme 25). Complex 117 hydrometallates the alkyne to give 118, which cyclizes to provide... [Pg.241]

In summary, these results demonstrate that air-stable POPd, POPdl and POPd2 complexes can be directly employed to mediate the rate-limiting oxidative addition of unactivated aryl chlorides in the presence of bases, and that such processes can be incorporated into efficient catalytic cycles for a variety of cross-coupling reactions. Noteworthy are the efficiency for unactivated aryl chlorides simplicity of use, low cost, air- and moisture-stability, and ready accessibility of these complexes. Additional applications of these air-stable palladium complexes for catalysis are currently under investigation. [Pg.180]


See other pages where Palladium complexes oxidation is mentioned: [Pg.126]    [Pg.453]    [Pg.182]    [Pg.184]    [Pg.168]    [Pg.566]    [Pg.567]    [Pg.576]    [Pg.584]    [Pg.81]    [Pg.118]    [Pg.121]    [Pg.122]    [Pg.161]    [Pg.180]    [Pg.192]    [Pg.204]    [Pg.250]    [Pg.412]    [Pg.15]    [Pg.1056]    [Pg.1587]    [Pg.6]    [Pg.412]    [Pg.76]    [Pg.78]    [Pg.186]    [Pg.234]    [Pg.238]    [Pg.8]    [Pg.193]    [Pg.570]    [Pg.596]    [Pg.597]    [Pg.606]    [Pg.611]    [Pg.641]    [Pg.177]   
See also in sourсe #XX -- [ Pg.280 ]

See also in sourсe #XX -- [ Pg.430 , Pg.431 ]




SEARCH



Aryl iodides, oxidative addition palladium complexes

High-oxidation-state palladium complex

Oxidation palladium

Oxidation reactions palladium complexes

Oxidation states in a palladium-tin complex

Oxidation with palladium complexes

Palladium Phosphine oxides, nickel complexes with

Palladium complexes Baeyer-Villiger oxidation

Palladium complexes alkene oxidative reactions

Palladium complexes aryl halide oxidative addition

Palladium complexes hydrocarbon oxidation

Palladium complexes oxidation catalysts

Palladium complexes oxidation state

Palladium complexes oxidative addition

Palladium complexes oxidative carbonylation

Palladium complexes pyridine oxides

Palladium oxide

Palladium oxidized

Palladium-bathophenanthroline complex alcohol oxidation

Palladium®) complexes oxidation additions

© 2024 chempedia.info