Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium complexes alkene oxidative reactions

The ff-complex obtained by the anti addition of an amine to a jS-alkene palladium complex was oxidatively transformed in a one-pot reaction to fi-acetoxy amines, 1,2-diamines, or aziridines, depending on the reagents employed. [Pg.875]

Andrews MA, Chang TCT, Cheng CWF, Emge TJ, Kelly KP, Koetzle TF (1984) Synthesis, characterization, and equilibria of palladium(ii) nitrile, alkene, and heterometallacy-clopentane complexes involved in metal nitro catalyzed alkene oxidation reactions. J Am Chem Soc 106 5913-5920... [Pg.228]

The mechanism for the reaction catalyzed by cationic palladium complexes (Scheme 24) differs from that proposed for early transition metal complexes, as well as from that suggested for the reaction shown in Eq. 17. For this catalyst system, the alkene substrate inserts into a Pd - Si bond a rather than a Pd-H bond [63]. Hydrosilylation of methylpalladium complex 100 then provides methane and palladium silyl species 112 (Scheme 24). Complex 112 coordinates to and inserts into the least substituted olefin regioselectively and irreversibly to provide 113 after coordination of the second alkene. Insertion into the second alkene through a boat-like transition state leads to trans cyclopentane 114, and o-bond metathesis (or oxidative addition/reductive elimination) leads to the observed trans stereochemistry of product 101a with regeneration of 112 [69]. [Pg.241]

Recently, another type of catalytic cycle for the hydrosilylation has been reported, which does not involve the oxidative addition of a hydrosilane to a low-valent metal. Instead, it involves bond metathesis step to release the hydrosilylation product from the catalyst (Scheme 2). In the cycle C, alkylmetal intermediate generated by hydrometallation of alkene undergoes the metathesis with hydrosilane to give the hydrosilylation product and to regenerate the metal hydride. This catalytic cycle is proposed for the reaction catalyzed by lanthanide or a group 3 metal.20 In the hydrosilylation with a trialkylsilane and a cationic palladium complex, the catalytic cycle involves silylmetallation of an alkene and metathesis between the resulting /3-silylalkyl intermediate and hydrosilane (cycle D).21... [Pg.816]

The reaction starts with an oxidative addition of an allylic compound to palladium(O) and a Tt-allyl-palladium complex forms. Carboxylates, allyl halides, etc. can be used. In practice one often starts with divalent palladium sources, which require in situ reduction. This reduction can take place in several ways, it may involve the alkene, the nucleophile, or the phosphine ligand added. One can start from zerovalent palladium complexes, but very stable palladium(O) complexes may also require an incubation period. Good starting materials are the 7t-allyl-palladium intermediates ... [Pg.273]

Palladium-catalyzed allylic oxidations, in contrast, are synthetically useful reactions. Palladium compounds are known to give rise to carbonyl compounds or products of vinylic oxidation via nucleophilic attack on a palladium alkene complex followed by p-hydride elimination (Scheme 9.16, path a see also Section 9.2.4). Allylic oxidation, however, can be expected if C—H bond cleavage precedes nucleophilic attack 694 A poorly coordinating weak base, for instance, may remove a proton, allowing the formation of a palladium rr-allyl complex intermediate (89, path by694-696 Under such conditions, oxidative allylic substitution can compete... [Pg.485]

In new studies heteropoly acids as cocatalysts were found to be very effective in combination with oxygen in the oxidation of ethylene.1311 Addition of phosphomo-lybdic acid to a chloride ion-free Pd(II)-Cu(II) catalyst system results in a great increase in catalytic activity and selectivity.1312 Aerobic oxidation of terminal alkenes to methy ketones can be performed with Pd(OAc)21313 or soluble palladium complexes. Modified cyclodextrins accelerates reaction rates and enhance selectivities in two-phase systems under mild conditions.1315 1316... [Pg.527]

Most of the reactions listed in Table 6 involve prior activation of the substrate by coordination to palladium in the form of a v-, a 77-ally lie, a 77-benzylic, or an alkyl or aryl complex. Once coordinated to the metal, the substrate becomes an electron acceptor and can react with a variety of different nucleophiles. The addition of nucleophiles (Nu) to the coordinated substrate may occur in two different ways, as shown by Scheme 9 for 7r-alkene complexes 397"399 (a) external attack leading to trans addition of palladium and nucleophile across the 77-system (path A) or (b) internal addition of the coordinated nucleophile to the complexed alkene resulting in cis addition of palladium and nucleophile to the double bond. The cis and trans adducts (120) and (121) may then undergo /3-hydride elimination (/3-H), producing the vinylic oxidation product... [Pg.362]

Non-oxidative hydrocarboxylation of alkenes to carboxylic acids with CO and H20 is catalyzed by palladium complexes such as PdCl2(PhCN)2 or PdCl2(PPh3)2, and a-methyl acids predominate in the presence of HC1.374,443 A recent improvement of this reaction consisted of the use of a PdCl2/CuCl2/HCl catalyst under oxidative conditions.377 Almost quantitative yields of a-methyl carboxylic acids and dicarboxylic acids were obtained from terminal alkenes and terminal dialkenes respectively, at room temperature and atmospheric pressure (equation 174).377... [Pg.369]

The catalytic cycle consists of the following basic reactions. In the first step (A) of the cycle, Pd species 29 undergoes oxidative addition of an alkenyl or aryl halide 30. The result is a a-alkonyl or a-aryl palladium complex 31. In the second step, alkene 32 coordinates with Pd(II) compound 31 This is followed by syn insertion (B) of the double bond into the alkenyl or aryl palladium bond... [Pg.50]

The reaction sequence in the vinylation of aromatic halides and vinyl halides, i.e. the Heck reaction, is oxidative addition of the alkyl halide to a zerovalent palladium complex, then insertion of an alkene and completed by /3-hydride elimination and HX elimination. Initially though, C-H activation of a C-H alkene bond had also been taken into consideration. Although the Heck reaction reduces the formation of salt by-products by half compared with cross-coupling reactions, salts are still formed in stoichiometric amounts. Further reduction of salt production by a proper choice of aryl precursors has been reported (Chapter III.2.1) [1]. In these examples aromatic carboxylic anhydrides were used instead of halides and the co-produced acid can be recycled and one molecule of carbon monoxide is sacrificed. Catalytic activation of aromatic C-H bonds and subsequent insertion of alkenes leads to new C-C bond formation without production of halide salt byproducts, as shown in Scheme 1. When the hydroarylation reaction is performed with alkynes one obtains arylalkenes, the products of the Heck reaction, which now are synthesized without the co-production of salts. No reoxidation of the metal is required, because palladium(II) is regenerated. [Pg.203]

Palladium(0)-catalysed coupling reactions of haloarenes with alkenes, leading to carbon-carbon bond formation between unsaturated species containing sp2-hybridised carbon atoms, follow a similar mechanistic scheme as already stated, the general features of the catalytic cycle involve an oxidative addition-alkene insertion-reductive elimination sequence. The reaction is initiated by the oxidative addition of electrophile to the zero-valent metal [86], The most widely used are diverse Pd(0) complexes, usually with weak donor ligands such as tertiary phosphines. A coordinatively unsaturated Pd(0) complex with a formally d° 14-electron structure has meanwhile been proven to be a catalytically active species. This complex is most often generated in situ [87-91],... [Pg.409]

This combination of reagents h s been used to oxidize terminal vinyl groups to methyl ketones and is known as the Wacker oxidation. The nucleophile is simply water, which attacks the activated alkene at the more substituted end in an oxypalladation step. (3-Hydride elimination from the resulting a-alkyl palladium complex releases the enol, which is rapidly converted into the more stable keto form. Overall, the reaction is a hydration of a terminal alkene that can tolerate a range of functional groups. [Pg.1337]

The mechanism for this palladium-catalyzed cross-coupling reaction comprises the initial oxidative addition of the electrophile 37 to the palladium(O) catalyst followed by transmetallation of triethylsilane to yield the corresponding bis(organo)palladium(II) complex 39, which then undergoes reductive elimination to form the alkene 40 and to regenerate the palladium(O) catalyst. [Pg.164]


See other pages where Palladium complexes alkene oxidative reactions is mentioned: [Pg.1056]    [Pg.257]    [Pg.190]    [Pg.438]    [Pg.727]    [Pg.501]    [Pg.247]    [Pg.694]    [Pg.40]    [Pg.224]    [Pg.185]    [Pg.95]    [Pg.475]    [Pg.59]    [Pg.348]    [Pg.185]    [Pg.185]    [Pg.257]    [Pg.242]    [Pg.433]    [Pg.151]    [Pg.1284]    [Pg.1290]    [Pg.488]    [Pg.185]    [Pg.1181]    [Pg.397]    [Pg.348]    [Pg.438]   


SEARCH



Alkene complexes reactions

Alkenes oxidant

Alkenes oxidation reactions

Alkenes palladium complexes

Alkenes, oxidative

Complexes alkenes

Oxidation palladium

Oxidation reactions palladium complexes

Oxidation reactions, alkene oxidative

Palladium alkene oxidation

Palladium alkenes

Palladium complexes oxidation

Palladium complexes reactions

Palladium oxide

Palladium oxidized

© 2024 chempedia.info