Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Packings transfer

Apparatus contained stainless steel packing, transfer lines, and pumps. Valves were Monel, hence copper is in effluent. [Pg.51]

Gas- and liquid-side mass transfer coefficients in packed absotptkm columns exhibit comfdex dependencies on the gas and liquid rates and the column packing, transfer area will bis a function of the hydrodynamics and packing. Correlations on experimental data, are usually devdoped in terms of the height of a transfisr and lk uid heights of transfer units are tinned 1 die relationships. with countercurrent flows In addition, the interfigial for such situations, based unit (HTU) concqit Gas... [Pg.118]

As was said in the introduction (Section 2.1), chemical structures are the universal and the most natural language of chemists, but not for computers. Computers woi k with bits packed into words or bytes, and they perceive neither atoms noi bonds. On the other hand, human beings do not cope with bits very well. Instead of thinking in terms of 0 and 1, chemists try to build models of the world of molecules. The models ai e conceptually quite simple 2D plots of molecular sti uctures or projections of 3D structures onto a plane. The problem is how to transfer these models to computers and how to make computers understand them. This communication must somehow be handled by widely understood input and output processes. The chemists way of thinking about structures must be translated into computers internal, machine representation through one or more intermediate steps or representations (sec figure 2-23, The input/output processes defined... [Pg.42]

To minimize the multiple path and mass transfer contributions to plate height (equations 12.23 and 12.26), the packing material should be of as small a diameter as is practical and loaded with a thin film of stationary phase (equation 12.25). Compared with capillary columns, which are discussed in the next section, packed columns can handle larger amounts of sample. Samples of 0.1-10 )J,L are routinely analyzed with a packed column. Column efficiencies are typically several hundred to 2000 plates/m, providing columns with 3000-10,000 theoretical plates. Assuming Wiax/Wiin is approximately 50, a packed column with 10,000 theoretical plates has a peak capacity (equation 12.18) of... [Pg.564]

Kovat s retention index (p. 575) liquid-solid adsorption chromatography (p. 590) longitudinal diffusion (p. 560) loop injector (p. 584) mass spectrum (p. 571) mass transfer (p. 561) micellar electrokinetic capillary chromatography (p. 606) micelle (p. 606) mobile phase (p. 546) normal-phase chromatography (p. 580) on-column injection (p. 568) open tubular column (p. 564) packed column (p. 564) peak capacity (p. 554)... [Pg.609]

The momentum of a fast-moving atom or ion is di.ssipated by collision with the closely packed molecules of the liquid target. As each collision occurs, some of the initial momentum is transferred to substrate molecules, causing them in turn to move faster and strike other molecules. The result is a cascade effect that ejects some of the substrate molecules from the surface of the liquid (Figure 4.2). The process can be likened to throwing a heavy. stone into a pool of water — some... [Pg.18]

Discussion of the concepts and procedures involved in designing packed gas absorption systems shall first be confined to simple gas absorption processes without compHcations isothermal absorption of a solute from a mixture containing an inert gas into a nonvolatile solvent without chemical reaction. Gas and Hquid are assumed to move through the packing in a plug-flow fashion. Deviations such as nonisotherma1 operation, multicomponent mass transfer effects, and departure from plug flow are treated in later sections. [Pg.23]

Design Procedure. The packed height of the tower required to reduce the concentration of the solute in the gas stream from to acceptable residual level ofjy 2 may be calculated by combining point values of the mass transfer rate and a differential material balance for the absorbed component. Referring to a sHce dh of the absorber (Fig. 5),... [Pg.25]

To use all of these equations, the heights of the transfer units or the mass transfer coefficients and must be known. Transfer data for packed columns are often measured and reported direcdy in terms of and and correlated in this form against and... [Pg.26]

Therefore, in this case, one transfer unit corresponds to the height of packing required to effect a composition change just equal to the average driving force. [Pg.26]

Experimental Mass Transfer Coefficients. Hundreds of papers have been pubHshed reporting mass transfer coefficients in packed columns. For some simple systems which have been studied quite extensively, mass transfer data may be obtained directiy from the Hterature (6). The situation with respect to the prediction of mass transfer coefficients for new systems is stiU poor. Despite the wealth of experimental and theoretical studies, no comprehensive theory has been developed, and most generalizations are based on empirical or semiempitical equations. [Pg.36]

Fig. 20. Improved packing parameters ( ) for liquid mass transfer (a) ceramic Raschig rings (b) metal Raschig rings (c) ceramic Bed saddles (d) metal PaH... Fig. 20. Improved packing parameters ( ) for liquid mass transfer (a) ceramic Raschig rings (b) metal Raschig rings (c) ceramic Bed saddles (d) metal PaH...
Other correlations based partially on theoretical considerations but made to fit existing data also exist (71—75). A number of researchers have also attempted to separate from a by measuring the latter, sometimes in terms of the wetted area (76—78). Finally, a number of correlations for the mass transfer coefficient itself exist. These ate based on a mote fundamental theory of mass transfer in packed columns (79—82). Although certain predictions were verified by experimental evidence, these models often cannot serve as design basis because the equations contain the interfacial area as an independent variable. [Pg.37]

The situation is very much poorer for stmctured rather than random packings, in that hardly any data on Hq and have been pubHshed. Based on a mechanistic model for mass transfer, a way to estimate HETP values for stmctured packings in distillation columns has been proposed (91), yet there is a clear need for more experimental data in this area. [Pg.39]

Rate of Mass Transfer in Bubble Plates. The Murphree vapor efficiency, much like the height of a transfer unit in packed absorbers, characterizes the rate of mass transfer in the equipment. The value of the efficiency depends on a large number of parameters not normally known, and its prediction is therefore difficult and involved. Correlations have led to widely used empirical relationships, which can be used for rough estimates (109,110). The most fundamental approach for tray efficiency estimation, however, summarizing intensive research on this topic, may be found in reference 111. [Pg.42]

External Fluid Film Resistance. A particle immersed ia a fluid is always surrounded by a laminar fluid film or boundary layer through which an adsorbiag or desorbiag molecule must diffuse. The thickness of this layer, and therefore the mass transfer resistance, depends on the hydrodynamic conditions. Mass transfer ia packed beds and other common contacting devices has been widely studied. The rate data are normally expressed ia terms of a simple linear rate expression of the form... [Pg.257]

N. Wakao, Heat and Mass Transfer in Packed Beds, Gordon Breach, New York, 1982. [Pg.268]


See other pages where Packings transfer is mentioned: [Pg.271]    [Pg.271]    [Pg.55]    [Pg.842]    [Pg.1889]    [Pg.2363]    [Pg.2414]    [Pg.2582]    [Pg.2903]    [Pg.2926]    [Pg.3]    [Pg.845]    [Pg.561]    [Pg.567]    [Pg.136]    [Pg.183]    [Pg.550]    [Pg.1006]    [Pg.8]    [Pg.191]    [Pg.29]    [Pg.29]    [Pg.29]    [Pg.33]    [Pg.33]    [Pg.34]    [Pg.36]    [Pg.37]    [Pg.38]    [Pg.42]    [Pg.206]    [Pg.362]    [Pg.386]    [Pg.386]   
See also in sourсe #XX -- [ Pg.361 ]




SEARCH



© 2024 chempedia.info