Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

P-Amino thioester

Scheme 11 Determination of the relative stereochemistry of a P-amino thioester... Scheme 11 Determination of the relative stereochemistry of a P-amino thioester...
Ricci, Pettersen, and coworkers reported that P-isocupreidine (P-ICD) derived from quinidine (69,20 mol%) promotes the enantioselective decarboxylative addition of the malonic half thioesters 70 to the imines 71 to afford the protected P-amino thioesters 72, which act as precursors for the preparation of P-amino acids [32] (Scheme 8.23). However, only low to moderate ee values (4—79% ee) were obtained. [Pg.212]

Scheme 4.81 Mannich reactions mediated by Corey s diazaborolidine. Transition state model 374 and conversion of p-amino thioesters 375 into p-lactams 376. Scheme 4.81 Mannich reactions mediated by Corey s diazaborolidine. Transition state model 374 and conversion of p-amino thioesters 375 into p-lactams 376.
Various p-amino thiols are synthesized from the corresponding P-amino alcohols 1 by activation of the hydroxy group to form a tosylate intermediate 2 and then conversion into a thioester 3 5 or direct thioacetylation of the hydroxy group of 1 using the Mitsunobu reaction with diisopropyl azodicarboxylate, triphenylphosphine, and thiolacetic acid as reagents (Scheme l). 6,7 The thioesters 3 are then hydrolyzed and the corresponding disulfide derivatives 4 are produced by iodine oxidation. 7 ... [Pg.304]

Horner-Wadsworth-Emmons Reactions of Phosphonate Anions. - As with the Horner modification of the Wittig reaction, the principal focus of papers that mention the Horner-Wadsworth-Emmons reaction relate to synthetic applications. The use of pressure to induce the synthesis of P-amino esters, p-thioesters and P-thionitriles via tandem Horner-Wadsworth-Emmons and Michael reactions has been reported. The reagent (l-tritylimidazol-4-yl)methylphosphonate (99) has been prepared and, when treated with aldehydes and ketones, affords (E)-vinylimidazoles in high yields. ... [Pg.626]

Intramolecular aza-Wittig ring closure is applied to the synthesis of thiazolines from P-azido thioesters 43, which are readily obtained from amino acid derivatives (13EJOC3290). Treatment of thioester 43 with... [Pg.285]

Carretero and coworkers have successfully employed a copper(I)-Fesulphos complex as a Lewis acid for enantioselective Mannich-type reactions of N-sulfonyl imines [43]. A combination of [151 CuBr]2 and AgCl04 does efficiently catalyze the addition of silyl enol ethers of ketones, esters, and thioesters (150) to N-(2-thienyl)sulfonyl aldimines (Scheme 17.30). The corresponding P-amino carbonyl derivatives (152) were isolated in good yields with generally good enan-tioselectivity. [Pg.395]

With eluent MeOH H O = 40 60% w (flow rate -1 ml/min) full sepai ation was achieved within acetylated and non-acetylated on amino group of eight thioesters of 4-aminobenzenthiosulfinic acid with retention in next order for R - = -CH3, -C,H3,-CH,-CH=CH, -C3H3by RP-HPLC on Spherisorb-ODS-2 (250x4,6 mm). The chromatograms were obtained at 254 and 289 nm. Retention was generalized by In = In - S-(p (cp - MeOH volume pai t in range near 0.4-0.6) as shown in Fig. [Pg.146]

The Photoactive Yellow Protein (PYP) is the blue-light photoreceptor that presumably mediates negative phototaxis of the purple bacterium Halorhodospira halophila [1]. Its chromophore is the deprotonated trans-p-coumaric acid covalently linked, via a thioester bond, to the unique cystein residue of the protein. Like for rhodopsins, the trans to cis isomerization of the chromophore was shown to be the first overall step of the PYP photocycle, but the reaction path that leads to the formation of the cis isomer is not clear yet (for review see [2]). From time-resolved spectroscopy measurements on native PYP in solution, it came out that the excited-state deactivation involves a series of fast events on the subpicosecond and picosecond timescales correlated to the chromophore reconfiguration [3-7]. On the other hand, chromophore H-bonding to the nearest amino acids was shown to play a key role in the trans excited state decay kinetics [3,8]. In an attempt to evaluate further the role of the mesoscopic environment in the photophysics of PYP, we made a comparative study of the native and denatured PYP. The excited-state relaxation path and kinetics were monitored by subpicosecond time-resolved absorption and gain spectroscopy. [Pg.417]

The most hydrophobic integral membrane proteins can be extracted into organic solvents such as mixtures of chloroform and methanol. One such proteolipid protein, the 23.5-kDa lipophilin, accounts for over half the protein of myelin.57 182 The purified protein from rat brain contains 66% of nonpolar amino acids and six molecules of covalently bound palmitic acid and other fatty acids per peptide chain in thioester linkage to cysteine side chains. This protein evidently has four transmembrane helical segments with the six fatty acid chains incorporated into the membrane bilayer. It also has cytoplasmic and extracellular loops, one of which binds inositol hexakisphosphate (Ins P-6). (Fig. 11-9).183 The myelin proteolipid is an essential component of the myelin sheath and defects in this protein are associated with some demyelinating diseases57 which are discussed in Chapter 30. [Pg.401]

The synthetase consists of the three modules E1, E2, and E3 (for a complete description, see Sec. II. A). Each module is composed of an activation site forming the acyl or aminoacyl adenylate, a carrier domain which is posttranslationally modified with 4 -phosphopantetheine (Sp), and a condensation domain (Cl, C2) or, alternatively, a structurally similar epimerization domain (Ep). Activation of aminoadipate (Aad) leads to an acylated enzyme intermediate, in which Aad is attached to the terminal cysteamine of the cofactor (El-Spl-Aad) [reactions (1) and (2)]. Likewise, activation of cysteine (Cys) leads to cysteinylated module 2 [reactions (3) and (4)]. For the condensation reaction to occur between aminoadipate as donor and cysteine as acceptor, both intermediates are thought to react at the condensation site of module 1 (Cl). Each condensation site is composed, in analogy to ribosomal peptide formation, of an aminoacyl and a peptidyl site. In this case of initiation, the thioester of Aad enters the P-site, while the thioester of Cys enters the A-site. Condensation occurs and leaves the dipeptidyl intermediate Aad-Cys at the carrier protein of the second module [reaction (5)]. The third amino acid valine is activated on module 3, and Val is attached to the carrier protein 3 [reactions (6) and (7)]. Formation of the tripeptide occurs at the second condensation site C2, with the dipeptidyl intermediate entering the P-site and the valiny 1-intermediate the A-site [reaction (8)]. [Pg.13]

Fig. 3 Hypothetical free energy diagram proposed to account for NCA reactivity. Free energy levels of NCAs and of the transition state of their aminolysis reactions compared to those of reactions of other amino acid derivatives (AA-X). A Comparison with linear anhydrides (X = OAc) B Alkyl ester (X = OR), thioesters (X = SR) and p-nitrophenyl esters (X = ONp). The free energy regions corresponding to the possibility of pathways involving NCAs are shown hashed... Fig. 3 Hypothetical free energy diagram proposed to account for NCA reactivity. Free energy levels of NCAs and of the transition state of their aminolysis reactions compared to those of reactions of other amino acid derivatives (AA-X). A Comparison with linear anhydrides (X = OAc) B Alkyl ester (X = OR), thioesters (X = SR) and p-nitrophenyl esters (X = ONp). The free energy regions corresponding to the possibility of pathways involving NCAs are shown hashed...

See other pages where P-Amino thioester is mentioned: [Pg.327]    [Pg.73]    [Pg.920]    [Pg.926]    [Pg.353]    [Pg.327]    [Pg.73]    [Pg.920]    [Pg.926]    [Pg.353]    [Pg.320]    [Pg.94]    [Pg.1353]    [Pg.137]    [Pg.918]    [Pg.920]    [Pg.918]    [Pg.119]    [Pg.918]    [Pg.456]    [Pg.205]    [Pg.212]    [Pg.92]    [Pg.30]    [Pg.25]    [Pg.415]    [Pg.110]    [Pg.249]    [Pg.55]    [Pg.19]    [Pg.22]    [Pg.76]    [Pg.206]    [Pg.196]    [Pg.108]    [Pg.1796]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Thioester

Thioesters, 0-amino

Thioesters, p-amino

Thioesters, p-amino

Thioesters, p-amino synthesis

© 2024 chempedia.info