Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ozone depleting products

Production of hydrogen fluoride from reaction of Cap2 with sulfuric acid is the largest user of fluorspar and accounts for approximately 60—65% of total U.S. consumption. The principal uses of hydrogen fluoride are ia the manufacture of aluminum fluoride and synthetic cryoHte for the Hall aluminum process and fluoropolymers and chlorofluorocarbons that are used as refrigerants, solvents, aerosols (qv), and ia plastics. Because of the concern that chlorofluorocarbons cause upper atmosphere ozone depletion, these compounds are being replaced by hydrochlorofluorocarbons and hydrofluorocarbons. [Pg.137]

A leader in the refrigerants industry, we manufacture and supply customers with economical chlorofluorocarbon (CFC) replacements and non-ozone depleting hydrofluorocarbon (HFC) refrigerants for automotive, home, commercial and transportation uses. In the Americas and Asia, you can find these products under the Genetron name and in Europe and the Middle East under Honeywell Refrigerants. [Pg.464]

Recognition of the threat of stratospheric ozone depletion posed by chlorofluorocarbons and chloro-fltiorohydrocarbons led 131 countries to sign the Montreal Protocol in 1987. Production of chlorofluorocarbons was banned as of January 1, 1996, because of their potential to further deplete stratospheric ozone. Chlorofluorohydrocarboiis will be... [Pg.86]

The chlorine-containing product species (HCl, CIONO2, HOCl) are "inert reservoirs" because they are not directly involved in ozone depletion however, they eventually break down by absorbing solar radiation or by reaction with other free radicals, returning chlorine to its catalytically active form. Ozone is formed fastest in the upper stratosphere at tropical latitudes (by reactions 1 and 2), and in those regions a few percent of the chlorine is in its active "free radical" form the rest is in the "inert reservoir" form (see Figure 3). [Pg.27]

Certainly, photochemical air pollution is not merely a local problem. Indeed, spread of anthropogenic smog plumes away from urban centers results in regional scale oxidant problems, such as found in the NE United States and many southern States. Ozone production has also been connected with biomass burning in the tropics (79,80,81). Transport of large-scale tropospheric ozone plumes over large distances has been documented from satellite measurements of total atmospheric ozone (82,83,84), originally taken to study stratospheric ozone depletion. [Pg.79]

Effect of UV on Productivity of the Southern Ocean. Has ozone depletion over Antarctica affected the productivity of the Southern Ocean There is no easy answer. First, one has to take into account the fact that the drastic decrease of ozone over Antarctica has been reported as recently as 1976, a relatively short time in the evolution of the organisms to develop mechanisms to cope with elevated UV. One of the most vexing problems in studying the effects of UV radiation on productivity, is a dearth of historical data on the level of UV. Without these baselines, normal fluctuations could easily be interpreted as decline in productivity. Second, there is a host of biotic and abiotic factors that play significant roles in governing the productivity of the Southern Ocean (40). Ultraviolet radiation is but one more complicating factor to be considered in an already stressful environment. [Pg.202]

Although in this chapter we have focused on the potential effects of increased UV-B radiation on the Antarctic marine ecosystem, our results also have bearing on efforts to describe the effects of UV radiation on global marine productivity. However, here again, considerable uncertainties still remain in assessing the effects of ozone depletion on global production. Several authors have predicted a... [Pg.202]

In summary, biomass burning is a major source of many trace gasses, especially the emissions of CO2, CH4, NMHC, NO,, HCN, CH3 CN, and CH3 Cl (73). In the tropics, these emissions lead to local increases in the production of O3. Biomass burning may also be responsible for as much as one-third of the total ozone produced in the troposphere (74). However, CH3 Cl from biomass burning is a significant source for active Cl in the stratosphere and plays a significant role in stratospheric ozone depletion (73). [Pg.449]

The most effective antiozonants are the substituted PPDs. Their mechanism of protection against ozone is based on the scavenger-protective film mechanism [68-70]. The reaction of ozone with the antiozonant is much faster than the reaction with the C=C bond of the rubber on the rubber surface [56]. The rubber is protected from the ozone attack tUl the surface antiozonant is depleted. As the antiozonant is continuously consumed through its reaction with ozone at the mbber surface, diffusion of the antiozonant from the inner parts to the surface replenishes the surface concentration to provide the continuous protection against ozone. A thin flexible film developed from the antiozonant/ozone reaction products on the mbber surface also offers protection. [Pg.475]

Nitrous oxide has received increasing attention the last decade, due to the growing awareness of its impact on the environment, as it has been identified as an ozone depletion agent and as a Greenhouse gas [1]. Identified major sources include adipic acid production, nitric acid and fertilizer plants, fossil fuel and biomass combustion and de-NOx treatment techniques, like three-way catalysis and selective catalytic reduction [2,3]. [Pg.641]

Global warming and ozone depletion are the two primary global hazards associated with chemicals production and use. Chemicals that have structural features capable of absorbing infra-red radiation have the potential to contribute to global warming (see Table 2.4). ... [Pg.37]

Methyl bromide has been identified as an ozone-depleting substance and is being gradually removed from world markets. Current legislation and plans call for the elimination of methyl bromide in most industrial countries by 2005, with possible exemptions for quarantine (UNEP, 1996). Currently there is an extensive search worldwide for products that are alternatives to methyl bromide (Kawakami, 1999). These alternatives are broadly defined and include components of management plans such as sanitation, monitoring, contact insecticides, heat treatments, and modified atmospheres, in addition to new fumigants (Batchelor, 1998). [Pg.268]


See other pages where Ozone depleting products is mentioned: [Pg.194]    [Pg.184]    [Pg.184]    [Pg.194]    [Pg.194]    [Pg.184]    [Pg.184]    [Pg.194]    [Pg.453]    [Pg.495]    [Pg.503]    [Pg.240]    [Pg.332]    [Pg.496]    [Pg.464]    [Pg.8]    [Pg.32]    [Pg.55]    [Pg.1092]    [Pg.409]    [Pg.999]    [Pg.1224]    [Pg.17]    [Pg.18]    [Pg.19]    [Pg.33]    [Pg.43]    [Pg.68]    [Pg.203]    [Pg.1046]    [Pg.3]    [Pg.273]    [Pg.482]    [Pg.29]    [Pg.213]    [Pg.452]    [Pg.626]    [Pg.666]    [Pg.138]    [Pg.56]    [Pg.72]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



Ozone depleter

Ozone depleters

Ozone depletion

Ozone production

Ozone-depleting

© 2024 chempedia.info