Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen to water

A substantial fraction of the named enzymes are oxido-reductases, responsible for shuttling electrons along metabolic pathways that reduce carbon dioxide to sugar (in the case of plants), or reduce oxygen to water (in the case of mammals). The oxido-reductases that drive these processes involve a small set of redox active cofactors , that is, small chemical groups that gain or lose electrons. These cofactors include iron porjDhyrins, iron-sulfur clusters and copper complexes as well as organic species that are ET active. [Pg.2974]

Scheme 10.27 Catalytic cycle of HppE. Dashed arrows indicate electron transport. In this scheme HPP binds to iron1". After a one-electron reduction, dioxygen binds and reoxidizes the iron center. The peroxide radical is capable of stereospecifically abstracting the (pro-R) hydrogen. Another one-electron reduction is required to reduce one peroxide oxygen to water. Epoxide formation is mediated by the resulting ironlv-oxo species. Scheme 10.27 Catalytic cycle of HppE. Dashed arrows indicate electron transport. In this scheme HPP binds to iron1". After a one-electron reduction, dioxygen binds and reoxidizes the iron center. The peroxide radical is capable of stereospecifically abstracting the (pro-R) hydrogen. Another one-electron reduction is required to reduce one peroxide oxygen to water. Epoxide formation is mediated by the resulting ironlv-oxo species.
What is the standard potential for the reduction of oxygen to water in (a) an acidic solution (b) a basic solution ... [Pg.646]

Fig. 3-4 Electron transport process schematic, showing coupled series of oxidation-reduction reactions that terminate with the reduction of molecular oxygen to water. The three molecules of ATP shown are generated by an enzyme called ATPase which is located in the cell membrane and forms ATP from a proton gradient created across the membrane. Fig. 3-4 Electron transport process schematic, showing coupled series of oxidation-reduction reactions that terminate with the reduction of molecular oxygen to water. The three molecules of ATP shown are generated by an enzyme called ATPase which is located in the cell membrane and forms ATP from a proton gradient created across the membrane.
Normally, the cascade from oxygen to water is well controlled by SOD, catalase and endogenous antioxidants such as glutathione, ascorbate and vitamin E. Vitamin E is the most important membrane-bound antioxidant. However, during ischaemia, the local control of ROS is lost, thus reactive free radicals can attack the membranes and lipid peroxidation begins. Endogenous antioxidants can be supplemented. This section describes this supplementation strategy. [Pg.267]

Collman JP, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC. 1980. Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102 6027-6036. [Pg.369]

Yagi I, Ishida T, et al. 2004. Electrocatal)tic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution. Electrochem Commun 6 773-779. [Pg.592]

Collman JP, Devaraj NK, Decreau RA, Yang Y, Yan Y-L, Ebina W, Eberspacher TA, Chidsey CED. 2007b. A cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315 1565. [Pg.688]

Forshey PA, Kuwana T. 1983. Electrochemistry of oxygen reduction. 4. Oxygen to water conversion by iron(II)(tetrakis(N-methyl-4-pyridyl)porphyrin) via hydrogen peroxide. [Pg.689]

The electrode processes of oxygen represent a further important group of electrocatalytic processes. The reduction of oxygen to water... [Pg.369]

Corrosion is a mixed-electrode process in which parts of the surface act as cathodes, reducing oxygen to water, and other parts act as anodes, with metal dissolution the main reaction. As is well known, iron and ferrous alloys do not dissolve readily even though thermodynamically they would be expected to, The reason is that in the range of mixed potentials normally encountered, iron in neutral or slightly acidic or basic solutions passivates, that is it forms a layer of oxide or oxyhydroxide that inhibits further corrosion. [Pg.326]

The laccases, classed as polyphenol oxidases, catalyze the oxidation of diphenols, polyamines, as well as some inorganic ions, coupled to the four-electron reduction of oxygen to water see Fig. 12.4 for the proposed catalytic cycle. Due to this broad specificity, and the recognition that this specificity can be extended by the use of redox mediators [27], laccases show promise in a range of applications [28], from biosensors [29-32], biobleaching [27, 33-35] or biodegradation [36], to biocatalytic fuel cells [1-3, 18, 26, 37-42]. [Pg.415]

As electrons move down the electron transport chain, the carriers become reduced (Fig. 14-1). The next carrier oxidizes the previous carrier, taking its electrons and transferring them on to the next carrier. Finally the electrons end up reducing oxygen to water. The cytochromes are named with letters in no particular order, making them tough to memorize, but you probably should learn them, at least right before the exam—after that you can look them up if you ever need to. [Pg.187]

Chapter 6). Other iron-sulfur proteins, so named because they contain iron sulfur clusters of various sizes, include the rubredoxins and ferredoxins. Rubredoxins are found in anaerobic bacteria and contain iron ligated to four cysteine sulfurs. Ferredoxins are found in plant chloroplasts and mammalian tissue and contain spin-coupled [2Fe-2S] clusters. Cytochromes comprise several large classes of electron transfer metalloproteins widespread in nature. At least four cytochromes are involved in the mitrochondrial electron transfer chain, which reduces oxygen to water according to equation 1.29. Further discussion of these proteins can be found in Chapters 6 and 7 of reference 13. [Pg.21]

Photogenerated electrons reduce oxygen to water, initially generating superoxide (02), which is further reduced to intermediate species in the formation of water. Hydroxide radicals ( OH) formed as intermediates are also involved in the mineralisation of the organic pollutant. [Pg.208]

Cytochrome c oxidase is a copper protein, which, in the respiratory electron-transfer chain of mitochondria and many bacteria, catalyses the reduction of molecular oxygen to water, according to the reaction ... [Pg.448]

Fe Cytochrome oxidase reduction of oxygen to water Cytochrome P-450 0-insertion from O2, and detoxification Cytochromes b and c electron transport in respiration and photosynthesis Cytochrome f photosynthetic electron transport Ferredoxin electron transport in photosynthesis and nitrogen fixation Iron-sulfur proteins electron transport in respiration and photosynthesis Nitrate and nitrite reductases reduction to ammonium... [Pg.274]

There are several demonstrations that cytochrome cdi catalyzes the reduction of molecular oxygen to water. Exactly how the enzyme catalyzes this reaction is of some interest, because the crystal structure shows that the catalytic center is mononuclear and expected to handle one electron at a time. If we assume that electron transfer between subimits cannot occur, then only two of the four electrons required for reduction of one oxygen atom can obviously be stored on one subimit of the enz5une before reduction of oxygen commences. Thus, it might be anticipated that some intermediates of oxygen reduction are relatively long-lived. [Pg.181]

The electron transport chain is vital to aerobic organisms. Interference with its action may be life threatening. Thus, cyanide and carbon monoxide bind to haem groups and inhibit the action of the enzyme cytochrome c oxidase, a protein complex that is effectively responsible for the terminal part of the electron transport sequence and the reduction of oxygen to water. [Pg.579]

Laccase is perhaps the metallo-enzyme most widely used for this aim. Laccases are a family of multicopper ( blue copper ) oxidases widely distributed in nature Many laccases have fungal origin, while others are produced in plants. They contain four Cu(II) ions, and catalyse the one-electron oxidation of four molecules of a reducing substrate with the concomitant four-electron reduction of oxygen to water . In view of their low redox potential, which is in the range of 0.5-0.8 V vs. NHE depending on the fungal source laccases typically oxidize phenols (phenoloxidase activity) or anilines. [Pg.724]

The efficiency of water electrolysis is defined as ratio of the energy content of hydrogen (the energy that can be recovered by reoxidation of the hydrogen and oxygen to water) to the electrical energy supplied to the electrolyzer [19,20]. In terms of voltage, the efficiency can be expressed as... [Pg.38]

In addition, cofactor engineering has been used to deliberately modify the intracellular NADH/NAD+ ratio that plays a predominant role in controlling the Lactococcus lactis fermentation pattern. The introduction of the nox gene, which codes for a NADH oxidase (NOX) that converts molecular oxygen to water at the expense of NADH, to a strain with an inactivated copy of the aldB gene for a-acetolactate decarboxylase led to the efficient metabolism of the na-... [Pg.624]

Cytochrome c and Cytochrome c Oxidase. - The mitochondrial electron transport chain is the site at which most of the free energy to be obtained from the oxidation of substrates is released and conserved as the energy-rich molecule ATP. In the final stage of this process, CcO, which is supplied with electrons by cyt c, catalyses the four-electron reduction of oxygen to water. Both are haem proteins, with CcO containing two haem and three copper centres, and both exhibit peroxidase-type activity. [Pg.37]

Two pyridine nucleotide-specific dehydrogenases are responsible for oxygen reduction in the cytosol a highly active NADH oxidase that reduces oxygen to water (Linstead and Bradley, 1988 Tanabe, 1979) and a minor NADPH oxidase that produces hydrogen peroxide (Linstead and Bradley 1988). [Pg.128]


See other pages where Oxygen to water is mentioned: [Pg.137]    [Pg.310]    [Pg.265]    [Pg.568]    [Pg.142]    [Pg.136]    [Pg.415]    [Pg.417]    [Pg.275]    [Pg.117]    [Pg.161]    [Pg.320]    [Pg.344]    [Pg.368]    [Pg.21]    [Pg.24]    [Pg.166]    [Pg.167]    [Pg.2]    [Pg.357]    [Pg.137]    [Pg.139]    [Pg.5]    [Pg.97]    [Pg.702]   
See also in sourсe #XX -- [ Pg.75 , Pg.112 , Pg.182 , Pg.193 , Pg.194 , Pg.206 , Pg.207 , Pg.208 , Pg.211 , Pg.213 , Pg.217 , Pg.338 , Pg.339 , Pg.343 , Pg.352 , Pg.389 ]




SEARCH



Manganese-catalysed oxidation of water to oxygen

Oxygen + water

To oxygen

Water oxidation to oxygen

Water oxygenation

© 2024 chempedia.info