Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

OXYGEN hydride

Facile isocyanide insertion reactions into metal-carbon, -nitrogen, -sulfur, -oxygen, - hydride, and - halide bonds have been found to readily occur. The insertion into metal-hydrides to give stable formimidines is particularly noteworthy since corresponding formyls (—CHO) are exceptionally difficult to synthesize and tend to be very unstable. There is a great deal of interest in carbon monoxide reductions, and the instability of the intermediate reduction products has made a study of the reduction process extremely difficult. Recently, however, the interaction of isocyanides with zirconium hydrides has allowed the isolation of the individual reduction steps of the isocyanide which has provided a model study for carbon monoxide reduction (39). [Pg.212]

Somewhat later, Brewster (12) proposed that in an acidic medium a metal surface would interact with an a, /3-unsaturated carbonyl system to form intermediates such as compounds X and XI in which the metal was complexed either with the carbonyl carbon (X) or the /3-carbon (XI). Such complexation would most probably take place after protonation of the carbonyl oxygen. Hydride... [Pg.59]

Siloxanes - Saturated silicon-oxygen hydrides with unbranched or branched chains of alternating silicon and oxygen atoms (each silicon atom is separated from its nearest silicon neighbors by single oxygen atoms). [5]... [Pg.115]

Figure 2.5 shows the boiling points of the hydrides in elements of Groups IV. V, VI and VII. Clearly there is an attractive force between the molecules of the hydrides of fluorine, oxygen and nitrogen... [Pg.52]

The element before carbon in Period 2, boron, has one electron less than carbon, and forms many covalent compounds of type BX3 where X is a monovalent atom or group. In these, the boron uses three sp hybrid orbitals to form three trigonal planar bonds, like carbon in ethene, but the unhybridised 2p orbital is vacant, i.e. it contains no electrons. In the nitrogen atom (one more electron than carbon) one orbital must contain two electrons—the lone pair hence sp hybridisation will give four tetrahedral orbitals, one containing this lone pair. Oxygen similarly hybridised will have two orbitals occupied by lone pairs, and fluorine, three. Hence the hydrides of the elements from carbon to fluorine have the structures... [Pg.57]

In addition to the hydrides of formula HjX, oxygen forms the hydride H2O2, hydrogen peroxide, and sulphur forms a whole series of hydrides called sulphanes. These are yellow liquids which are thermodynamically unstable with respect to hydrogen sulphide and sulphur. [Pg.269]

Cyclopentene derivatives with carboxylic acid side-chains can be stereoselectively hydroxy-lated by the iodolactonization procedure (E.J. Corey, 1969, 1970). To the trisubstituted cyclopentene described on p. 210 a large iodine cation is added stereoselectively to the less hindered -side of the 9,10 double bond. Lactone formation occurs on the intermediate iod-onium ion specifically at C-9ot. Later the iodine is reductively removed with tri-n-butyltin hydride. The cyclopentane ring now bears all oxygen and carbon substituents in the right stereochemistry, and the carbon chains can be built starting from the C-8 and C-12 substit""" ... [Pg.275]

Oxidation of ethylene in alcohol with PdCl2 in the presence of a base gives an acetal and vinyl ether[106,107], The reaction of alkenes with alcohols mediated by PdCl2 affords acetals 64 as major products and vinyl ethers 65 as minor products. No deuterium incorporation was observed in the acetal formed from ethylene and MeOD, indicating that hydride shift takes place and the acetal is not formed by the addition of methanol to methyl vinyl etherjlOS], The reaction can be carried out catalytically using CuClj under oxygen[28]. [Pg.31]

In the acid catalyzed dehydration of 2 methyl 1 propanol what carbocation would be formed if a hydride shift accompanied cleavage of the carbon-oxygen bond in the alkyloxonium lon" What ion would be formed as a result of a methyl shift" Which pathway do you think will predominate a hydnde shift or a methyl shift" ... [Pg.228]

Step 1 Hydride (hydrogen + two electrons) is transferred from boron to the positively polarized carbon of the carbonyl group The carbonyl oxygen bonds to boron... [Pg.630]

Neither sodium borohydride nor lithium aluminum hydride reduces isolated carbon-carbon double bonds This makes possible the selective reduction of a carbonyl group m a molecule that contains both carbon-carbon and carbon-oxygen double bonds... [Pg.631]

Volatile hydrides, except those of Periodic Group VII and of oxygen and nitrogen, are named by citing the root name of the element (penultimate consonant and Latin affixes. Sec. 3.1.2.2) followed by the suffix -ane. Exceptions are water, ammonia, hydrazine, phosphine, arsine, stibine, and bismuthine. [Pg.217]

Oxygen Acetaldehyde, acetone, alcohols, alkali metals, alkaline earth metals, Al-Ti alloys, ether, carbon disulflde, halocarbons, hydrocarbons, metal hydrides, 1,3,5-trioxane... [Pg.1210]

Although the lUPAC has recommended the names tetrahydroborate, tetrahydroaluminate, etc, this nomenclature is not yet ia general use. Borohydrides. The alkaU metal borohydrides are the most important complex hydrides. They are ionic, white, crystalline, high melting soHds that are sensitive to moisture but not to oxygen. Group 13 (IIIA) and transition-metal borohydrides, on the other hand, are covalendy bonded and are either Hquids or sublimable soHds. The alkaline-earth borohydrides are iatermediate between these two extremes, and display some covalent character. [Pg.301]

The reaction of hydrogen and lithium readily gives lithium hydride [7580-67-8], LiH, which is stable at temperatures from the melting poiat up to 800°C. Lithium reacts with aitrogea, evea at ordiaary temperatures, to form the reddish browa nitride, Li3N. Lithium bums when heated in oxygen to... [Pg.223]

The product chunks are hydrided, cmshed, and dehydrided. The resultant powder is blended and pressed into bars which are purified by high temperature sintering. The sintering removes all of the carbon and most of the oxygen and is followed by consoHdation by either arc or electron-beam melting. [Pg.23]


See other pages where OXYGEN hydride is mentioned: [Pg.425]    [Pg.74]    [Pg.125]    [Pg.587]    [Pg.110]    [Pg.168]    [Pg.425]    [Pg.74]    [Pg.125]    [Pg.587]    [Pg.110]    [Pg.168]    [Pg.30]    [Pg.209]    [Pg.359]    [Pg.113]    [Pg.117]    [Pg.123]    [Pg.259]    [Pg.370]    [Pg.879]    [Pg.922]    [Pg.194]    [Pg.106]    [Pg.111]    [Pg.1209]    [Pg.39]    [Pg.456]    [Pg.503]   
See also in sourсe #XX -- [ Pg.269 , Pg.270 , Pg.271 , Pg.272 , Pg.273 , Pg.274 , Pg.275 , Pg.276 , Pg.277 , Pg.278 , Pg.279 , Pg.280 , Pg.281 ]

See also in sourсe #XX -- [ Pg.269 , Pg.270 , Pg.271 , Pg.272 , Pg.273 , Pg.274 , Pg.275 , Pg.276 , Pg.277 , Pg.278 , Pg.279 , Pg.280 , Pg.281 ]

See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Boron—oxygen bonds complex hydrides

Boron—oxygen bonds nitrogen hydrides

Oxygen acids, deprotonations, sodium hydride

Oxygen transition-metal hydrides

Tributyltin hydride—Oxygen

© 2024 chempedia.info