Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen flammability

EMPTY placard. The specifications for the FLAMMABLE-EMPTY placard is representative of the requirements for the following EMPTY placards NON-FLAMMABLE GAS POISON GAS CHLORINE OXYGEN FLAMMABLE GAS FLAMMABLE FLAMMABLE SOLID FLAMMABLE SOLID W OXIDIZER ORGANIC PEROXIDE POISON and CORROSIVE. The specification for each EMPTY placard must be the same as those prescribed for each placard except for the top triangle in the placard. [Pg.76]

If using several individual instruments, are they testing in the right sequence (oxygen, flammables, toxics) ... [Pg.329]

Ratio of specific heats, Cp/Cv Gross heat of combustion Gross heat after vaporization Flammable limits in oxygen Flammable limits in air... [Pg.467]

Flammability limits. A flammable gas will bum in air only over a limited range of composition. Below a certain concentration of the flammable gas, the lower flammability limit, the mixture is too lean to burn, i.e., lacks fuel. Above a certain concentration, the upper flammability limit, it is too rich to burn, i.e., lacks oxygen. Concentrations between these limits constitute the flammable range. [Pg.256]

The catalytic vapor-phase oxidation of propylene is generally carried out in a fixed-bed multitube reactor at near atmospheric pressures and elevated temperatures (ca 350°C) molten salt is used for temperature control. Air is commonly used as the oxygen source and steam is added to suppress the formation of flammable gas mixtures. Operation can be single pass or a recycle stream may be employed. Recent interest has focused on improving process efficiency and minimizing process wastes by defining process improvements that use recycle of process gas streams and/or use of new reaction diluents (20-24). [Pg.123]

Inert Gas Dilution. Inert gas dilution involves the use of additives that produce large volumes of noncombustible gases when the polymer is decomposed. These gases dilute the oxygen supply to the flame or dilute the fuel concentration below the flammability limit. Metal hydroxides, metal carbonates, and some nitrogen-producing compounds function in this way as flame retardants (see Flame retardants, antimony and other inorganic compounds). [Pg.465]

In the absence of air, TEE disproportionates violently to give carbon and carbon tetrafluoride the same amount of energy is generated as in black powder explosions. This type of decomposition is initiated thermally and equipment hot spots must be avoided. The flammability limits of TEE are 14—43% it bums when mixed with air and forms explosive mixtures with air and oxygen. It can be stored in steel cylinders under controlled conditions inhibited with a suitable stabilizer. The oxygen content of the vapor phase should not exceed 10 ppm. Although TEE is nontoxic, it may be contaminated by highly toxic fluorocarbon compounds. [Pg.349]

Most of the world s commercial formaldehyde is manufactured from methanol and air either by a process using a silver catalyst or one using a metal oxide catalyst. Reactor feed to the former is on the methanol-rich side of a flammable mixture and virtually complete reaction of oxygen is obtained conversely, feed to the metal oxide catalyst is lean in methanol and almost complete conversion of methanol is achieved. [Pg.493]

Usually, organoboranes are sensitive to oxygen. Simple trialkylboranes are spontaneously flammable in contact with air. Nevertheless, under carefully controlled conditions the reaction of organoboranes with oxygen can be used for the preparation of alcohols or alkyl hydroperoxides (228,229). Aldehydes are produced by oxidation of primary alkylboranes with pyridinium chi orochrom ate (188). Chromic acid at pH < 3 transforms secondary alkyl and cycloalkylboranes into ketones pyridinium chi orochrom ate can also be used (230,231). A convenient procedure for the direct conversion of terminal alkenes into carboxyUc acids employs hydroboration with dibromoborane—dimethyl sulfide and oxidation of the intermediate alkyldibromoborane with chromium trioxide in 90% aqueous acetic acid (232,233). [Pg.315]

Flammability and Explosivity. Ozone is endothermic, thus it can bum or detonate by itself and represents the simplest combustible and explosive system. The concentration threshold for spark-initiated explosion ofHquid ozone in oxygen at —183° is 18.6 mol % O the concentration limit... [Pg.490]

Health and Safety. Petroleum and oxygenate formulas are either flammable or combustible. Flammables must be used in facUities that meet requirements for ha2ardous locations. Soak tanks and other equipment used in the removing process must meet Occupational Safety and Health Administration (OSHA) standards for use with flammable Hquids. Adequate ventilation that meets the exposure level for the major ingredient must be attained. The work environment can be monitored by active air sampling and analysis of charcoal tubes. [Pg.551]

Extreme caution must be taken to prevent the possibility of fire when using flammable removers. Extra care must be taken when stripping on location to secure the area of ignition sources. When used on lacquer finishes, the dissolved finish and remover combined are extremely flammable. Natural mbber, neoprene, or other gloves suitable for use with the remover formula must be worn. The effect of skin contact with the remover is limited because there is immediate irritation and discomfort. Canister respirators are available for most petroleum and oxygenate remover solvents. Symptoms of long-term overexposure should be compared to symptoms of the major ingredients in the formula. [Pg.552]

Propylene is a colorless gas under normal conditions, has anesthetic properties at high concentrations, and can cause asphyxiation. It does not irritate the eyes and its odor is characteristic of olefins. Propjiene is a flammable gas under normal atmospheric conditions. Vapor-cloud formation from Hquid or vapor leaks is the main ha2ard that can lead to explosion. The autoignition temperature is 731 K in air and 696 K in oxygen (80). Evaporation of Hquid propylene can cause skin bums. Propylene also reacts vigorously with oxidising materials. Under unusual conditions, eg, 96.8 MPa (995 atm) and 600 K, it explodes. It reacts violentiy with NO2, N2O4, and N2O (81). Explosions have been reported when Hquid propylene contacts water at 315—348 K (82). Table 8 shows the ratio TJTp where is the initial water temperature, and T is the superheat limit temperature of the hydrocarbon. [Pg.128]

The metal reacts violently with water, ice, steam, lower molecular weight alcohols, and chloriaated hydrocarbons. In the presence of air/moisture mbidium can act as an ignition source if a flammable organic Hquid or vapor is also present. Rubidium can ignite spontaneously ia the presence of oxygen and tarnishes rapidly when exposed to air. Burning mbidium should only be extinguished with dry powders, such as dolomite or sodium carbonate. [Pg.280]

Stabilized tetrachloroethylene, as provided commercially, can be used in the presence of air, water, and light, in contact with common materials of constmction, at temperatures up to about 140°C. It resists hydrolysis at temperatures up to 150°C (2). However, the unstabilized compound, in the presence of water for prolonged periods, slowly hydrolyzes to yield trichloroacetic acid [76-03-9] and hydrochloric acid. In the absence of catalysts, air, or moisture, tetrachloroethylene is stable to about 500°C. Although it does not have a flash point or form flammable mixtures in air or oxygen, thermal decomposition results in the formation of hydrogen chloride and phosgene [75-44-5] (3). [Pg.28]


See other pages where Oxygen flammability is mentioned: [Pg.81]    [Pg.475]    [Pg.220]    [Pg.81]    [Pg.475]    [Pg.220]    [Pg.78]    [Pg.53]    [Pg.314]    [Pg.451]    [Pg.485]    [Pg.487]    [Pg.431]    [Pg.494]    [Pg.11]    [Pg.480]    [Pg.476]    [Pg.134]    [Pg.139]    [Pg.255]    [Pg.79]    [Pg.79]    [Pg.68]    [Pg.96]    [Pg.102]    [Pg.332]    [Pg.144]    [Pg.318]    [Pg.528]    [Pg.337]    [Pg.567]    [Pg.328]    [Pg.27]    [Pg.50]    [Pg.496]    [Pg.314]   
See also in sourсe #XX -- [ Pg.437 ]




SEARCH



© 2024 chempedia.info