Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oximes catalytic

Reduction of unsaturated oximes without effect on the C=C double bond is best carried out by sodium amalgam at not too high a temperature. Quinone dioximes are best converted into the amines by use of sodium sulfide in boiling alcohol.115 Amino carboxylic acids are prepared from the corresponding oxo carboxylic acid oximes, catalytic reduction being in these cases the method of choice. [Pg.566]

In catalytic hydrogenation, a compound is reduced with molecular hydrogen in the presence of a catalyst. This reaction has found appHcations in many areas of chemistry including the preparation of amines. Nitro, nitroso, hydroxylamino, azoxy, azo, and hydrazo compounds can all be reduced to amines by catalytic hydrogenation under the right conditions. Nitriles, amides, thioamides, and oximes can also be hydrogenated to give amines (1). Some examples of these reactions foUow ... [Pg.257]

Ivermectin is the catalytic reduction product of avermectin, a macroHde containing a spiroketal ring system. Two other related antibiotics having significantly different stmctural features and biological properties, moxidectin and milbemycin oxime, were more recentiy introduced into the market. Although these compounds have no antimicrobial activity, they are sometimes referred to as antibiotics because they are derived from fermentation products and have very selective toxicities. They have potent activity against worms or helminths and certain ectoparasites such as mites and ticks. [Pg.476]

Dutch State Mines (Stamicarbon). Vapor-phase, catalytic hydrogenation of phenol to cyclohexanone over palladium on alumina, Hcensed by Stamicarbon, the engineering subsidiary of DSM, gives a 95% yield at high conversion plus an additional 3% by dehydrogenation of coproduct cyclohexanol over a copper catalyst. Cyclohexane oxidation, an alternative route to cyclohexanone, is used in the United States and in Asia by DSM. A cyclohexane vapor-cloud explosion occurred in 1975 at a co-owned DSM plant in Flixborough, UK (12) the plant was rebuilt but later closed. In addition to the conventional Raschig process for hydroxylamine, DSM has developed a hydroxylamine phosphate—oxime (HPO) process for cyclohexanone oxime no by-product ammonium sulfate is produced. Catalytic ammonia oxidation is followed by absorption of NO in a buffered aqueous phosphoric acid... [Pg.430]

The catalytic reduction of 2-methyl-3-phenyl-3-isoxazoline (159) produced /3-hydroxypropiophenone (160) (74CPB70). Ring fission also occurred on base treatment of the 3,5-diaryl-3-isoxazoline (161) to give the a,/3-unsaturated oxime (162) (70CI(L)624). [Pg.44]

When an ethanol solution of the oxime mixture of (360) and (361) was heated with a catalytic amount of hydrochloric acid, only one isoxazole (362) was formed. This regiospecific... [Pg.73]

Thebainone (Schopf), CigHjjOgN. This substance, which must be distinguished from Pschorr s thebainone (metothebainone of Schopf (see p. 248) ), is formed, along with the latter in the reduction of thebaine by stannous chloride in hydrochloric acid, and was isolated by Schopf and Hirsch. Its prior isolation by Pschorr, as confirmed by Morris and Small, has been referred to already. It crystallises with 0-5 HjO, has m.p. 151-2°, yields a hydriodide, m.p. 258-9°, methiodide, m.p. 223°, and an oxime, m.p. 185-6°. On catalytic hydrogenation it yields dihydrothebainone (LI), and can be degraded to 3 4 6-triacetoxyphenanthrene, m.p. 165-7°. On this basis formula (XLIX) is assigned to it. The mechanism of the formation of codeinone, thebainone and mefathebainone from thebaine is discussed by Schopf and Hirsch. ... [Pg.249]

Since dihydrothebainone is also formed by hydrogenation of thebainone (Schopf and Hirsch i), and as Schopf and Pfeifer have shown that 1 5-dibromodihydrothebainone, on treatment with alkali, is converted into. 1-bromodihydrocodeinone by formation-of the C -C oxygen bridge, and this, on catalytic hydrogenation, yields dihydrocodeinone (LIII, p. 246), the constitution of which has been demonstrated by Schopf (p. 244), there can be little doubt that dihydrothebainone is represented by (LI). Schopf and Winterhalder have also isolated as an oxime (m.p. 228°, [a] °° — 115-8°) an e.pidihydrothebainone, which is regarded as the epimeride of dihydrothebainone. [Pg.250]

Catalytic reduction of fluormated aliphatic and aromatic nitro compounds to give oximes and amines was described previously, as was the use of dissolving metals to prepare amines [Si] Refmement of these techniques has resulted in optimized yields and, as indicated in equations 69 and 70, in selective reductions [S6, 87]... [Pg.313]

A zinc-free alternative to the Knorr pyrrole synthesis employs catalytic hydrogenation, as for 17 + 18 to 19. Oximes such as 17 are readily prepared by nitrosation (NaNOa, HO Ac) of the active methylene group. [Pg.81]

Catalytic cleavage of the nitrogen-oxygen bond occurs very frequently as in reduction of nitro compounds, oximes, and various heterocyclics these reactions are discussed in separate chapters. Considered here are N-oxides, hydroxylamincs, and N- and C-nitroso compounds. [Pg.171]

An artificial metalloenzyme (26) was designed by Breslow et al. 24). It was the first example of a complete artificial enzyme, having a substrate binding cyclodextrin cavity and a Ni2+ ion-chelated nucleophilic group for catalysis. Metalloenzyme (26) behaves a real catalyst, exhibiting turnover, and enhances the rate of hydrolysis of p-nitrophenyl acetate more than 103 fold. The catalytic group of 26 is a -Ni2+ complex which itself is active toward the substrate 1, but not toward such a substrate having no metal ion affinity at a low catalyst concentration. It is appearent that the metal ion in 26 activates the oximate anion by chelation, but not the substrate directly as believed in carboxypeptidase. [Pg.153]

The benzodiazepinone 26 condenses with 3-melhylbulyl nitrite (isopentyl nitrite) in the presence of potassium lerl-butoxide to give the oxime 27, which is converted into the amine 28 by catalytic hydrogenation.227... [Pg.406]

The oxime 299 is silylated in the presence of catalytic amounts of TMSOTf 20 to 300, which affords, via the Beckmann fragmentation intermediate 301 and alkylation with allyltrimethylsilane 82, 66% of the seco nitrile 302 [101, 102] (Scheme 4.39). Tris(trimethylsilyl) ketenimine 303 reacts with aldehydes such as benzaldehyde in the presence of Bp3-OEt2, via the aldol adduct 304, to give the unsaturated nitriles 305, in 99% yield, and HMDSO 7 [103]. [Pg.67]

As already discussed in Section 7.4, hexamethyidisiiane 857 (which is produced on a technical scale), in the presence of catalytic amounts of tetrabutylammonium fluoride di- or trihydrate in THF, reduces aromatic heterocyclic N-oxides such as pyridine N-oxide 860, quinoline N-oxide 877, or isoquinoline N-oxide 879 to the heterocycles [95] and nitrones to Schiff-bases. Aromatic nitro compounds such as nitrobenzene are reduced analogously to azo compounds such as azobenzene [96]. As mentioned in Section 7.5, secondary aliphatic nitro groups are reduced to oximes. [Pg.277]

Catalytic asymmetric hydrogenation is a relatively developed process compared to other asymmetric processes practised today. Efforts in this direction have already been made. The first report in this respect is the use of Pd on natural silk for hydrogenating oximes and oxazolones with optical yields of about 36%. Izumi and Sachtler have shown that a Ni catalyst modified with (i ,.R)-tartaric acid can be used for the hydrogenation of methylacetoacetate to methyl-3-hydroxybutyrate. The group of Orito in Japan (1979) and Blaser and co-workers at Ciba-Geigy (1988) have reported the use of a cinchona alkaloid modified Pt/AlaO.i catalyst for the enantioselective hydrogenation of a-keto-esters such as methylpyruvate and ethylpyruvate to optically active (/f)-methylacetate and (7 )-ethylacetate. [Pg.175]

Finally, with the aim of discovering novel chiral oxomolybdenum catalysts able to perform enantioselective alkene epoxidations, Kuhn et al. have reported the exploration of the catalytic behaviour of a series of dioxomolybdenum(VI) complexes with chiral cw-8-phenylthiomenthol ligands derived from ( + )-pulegone. Therefore, the epoxidation of c -p-methylstyrene using t-butyl-hydroperoxide as the oxidant and performed in the presence of ( + )-(2i ,5i )-2-[1-methyl-l-(phenylthio)ethyl]-5-methylcyclohexanone oxime as the ligand, did not produce, however, a significant optical induction in these conditions. [Pg.326]

Reaction with Propargyl Halides. The indium-mediated coupling of propargyl bromide with a variety of imines and imine oxides afforded homo-propargylamine derivatives in aqueous media under mild conditions.78 Propargylation of glyoxylic oxime ether in the presence of a catalytic amount of palladium(O) complex and indium(I) iodide in aqueous media was also studied (Eq.11.47).79... [Pg.357]

Alkyl Co oxime complexes have been used as chain transfer catalysts in free radical polymerizations.866,867 Regioselective hydronitrosation of styrene (with NO in DMF) to PhCMe=NOH is catalyzed by Co(dmg)2(py)Cl in 83% yield.868,869 Catalytic amounts of the trivalent Co(dmg2tn)I2 (192) (X = I) generate alkyl radicals from their corresponding bromides under mild reaction conditions, allowing the selective preparation of either saturated or unsaturated radical cyclization products.870... [Pg.73]

Oximes Amines can be prepared by the catalytic hydrogenation— hydrogenolysis of oximes over nickel or noble metal catalysts. Nickel is used usually in the presence of ammonia. Noble metals are used under mild conditions. The stereochemistry of the reaction depends on the circumstances. On Ra-Ni the trans-2-alkylcyclohexylamine (41) was the main product,529 whereas on palladium the cis product (42) was produced (Scheme 4.137).530... [Pg.194]

One of the exciting results to come out of heterogeneous catalysis research since the early 1980s is the discovery and development of catalysts that employ hydrogen peroxide to selectively oxidize organic compounds at low temperatures in the liquid phase. These catalysts are based on titanium, and the important discovery was a way to isolate titanium in framework locations of the inner cavities of zeolites (molecular sieves). Thus, mild oxidations may be run in water or water-soluble solvents. Practicing organic chemists now have a way to catalytically oxidize benzene to phenols alkanes to alcohols and ketones primary alcohols to aldehydes, acids, esters, and acetals secondary alcohols to ketones primary amines to oximes secondary amines to hydroxyl-amines and tertiary amines to amine oxides. [Pg.229]

By 1990, most of the catalytic reactions of TS-1 had been discovered. The wide scope of these reactions is shown in Fig. 6.1.35 Conversions include olefins and diolefins to epoxides,6,7 12 16 19 21 24 34 36 38 13 aromatic compounds to phenols,7,9 19 25 27 36 ketones to oximes,11 20 34 46 primary alcohols to aldehydes and then to acids, secondary alcohols to ketones,34-36 42 47-30 and alkanes to secondary and tertiary alcohols and ketones.6 34 43 31 52... [Pg.232]

See 2-Butanone oxime hydrochloride See Other CATALYTIC IMPURITY INCIDENTS... [Pg.553]

See Ethyl 2-formylpropionate oxime Hydrogen chloride Sulfuric acid Cyclopentanone oxime See other CATALYTIC IMPURITY INCIDENTS, OXIMES... [Pg.553]


See other pages where Oximes catalytic is mentioned: [Pg.70]    [Pg.70]    [Pg.277]    [Pg.172]    [Pg.28]    [Pg.90]    [Pg.131]    [Pg.247]    [Pg.248]    [Pg.249]    [Pg.256]    [Pg.268]    [Pg.409]    [Pg.728]    [Pg.277]    [Pg.70]    [Pg.90]    [Pg.23]    [Pg.147]    [Pg.364]    [Pg.545]    [Pg.37]    [Pg.155]    [Pg.434]    [Pg.296]    [Pg.37]    [Pg.71]   
See also in sourсe #XX -- [ Pg.143 ]

See also in sourсe #XX -- [ Pg.8 , Pg.143 ]

See also in sourсe #XX -- [ Pg.8 , Pg.143 ]




SEARCH



Catalytic reactions involving oximes

Hydrogenation, catalytic oxime, stereoselective

Oxime catalytic hydrogenation

Oximes catalytic reduction

Oximes, acid catalyzed catalytic hydrogenation

© 2024 chempedia.info