Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide particles catalytic activity

For example, the most noteworthy disadvantage of catalytic wet oxidation is the severe catalyst deactivation (Larachi el al., 1999). Hamoudi el al. (1998, 1999) systematically studied the deactivation of Mn02/Ce02 catalyst during wet catalytic oxidation of phenol and the catalyst-surface modifications. It was observed that deactivation was induced mainly by the formation of carbonaceous deposits on the catalyst surface. Ohta et al. (1980) reported that the size of the catalyst particles affected the stabilization of catalytic activity. For granular particles of supported copper oxide, the catalytic activity was decreased after each inn, even after six successive experiments. In contrast, for larger particles the catalytic activity was stabilized after the first three runs. [Pg.518]

Pd-doped catalysts have been produced by USS [82]. The fingerprint of Pd adopting the octahedral coordination of Fe in LaFeo,95Pdo,o503 has been observed in the XANES spectra of the material prepared by spray synthesis (27m /g) similarly to the preparation by the amorphous citrate method (14m /g) [17,82]. In contrast, the flame-made material of the same composition (22m /g) exposed metallic Pd particles on LaFeOs similarly to preparation by solution combustion. The different nature of the Pd species obtained by changing the synthesis method dramatically influences their catalytic performance, since PdO nanoparticles exposed at the surface of the mixed oxide exhibit catalytic activity, whereas Pd—O species in the bulk of the mixed oxide are inactive, at least in the case of methane oxidation [27]. In contrast to LaFeOs, LaMnOs did not allow Pd to adopt the octahedral coordination irrespective of synthesis method. Therefore, the coordination of Pd strongly depends on both the composition of the perovskite-type oxide and the synthesis method. [Pg.86]

The use of ceria and ceria-based materials in catalytic science has been well established in recent decades. Several investigations have reported that different kinds of interaction between ceria and various metal oxides influence catalytic activity and facilitate an improvement in the dynamic performance in the removal of VOCs. Catalytic activity is a complex function of several factors, such as oxidation state, nature of the support, catalyst composition, preparation method, crystal structure, particle size and so on. Doping of ceria creates an additional structural defect that influences the oxygen storage/release properties. Further, oxygen ion mobility affects phase stability and the aging properties of CeOg, and increases catalytic activity. ... [Pg.434]

Specifications and Packaging. Aluminum chloride s catalytic activity depends on its purity and particle size. Moisture contamination is an important concern and exposure to humid air must be prevented to preserve product integrity. Moisture contamination can be deterrnined by a sample s nonvolatile material content. After subliming, the material remaining is principally nonvolatile aluminum oxide. Water contamination leads to a higher content of nonvolatile material. [Pg.148]

In particular, emphasis will be placed on the use of chemisorption to measure the metal dispersion, metal area, or particle size of catalytically active metals supported on nonreducible oxides such as the refractory oxides, silica, alumina, silica-alumina, and zeolites. In contrast to physical adsorption, there are no complete books devoted to this aspect of catalyst characterization however, there is a chapter in Anderson that discusses the subject. [Pg.740]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

The turnover frequency (TOP) based on surface-exposed atoms significantly increases with a decrease in the diameter of the gold particle from 5 nm [66]. This feature is unique to gold, because other noble metals usually show TOFs that decrease or remain the same with a decrease in the diameter [7]. The decrease in particle size gives rise to an increase in corner or edge and perimeter of NPs and change in electronic structure however, the origin of size effects on catalytic activity for CO oxidation is not clear. [Pg.67]

Approximate composition of individual hexaaluminate particles was measured by an analytical electron microscope to elucidate the correlation between hexaaluminate phases (Mn-rich and -poor) and Pr contents in the lattice (Figure 6). Although relative concentration of Sr to A1 was a constant at x=0, the composition of the particles in the sample was separated into two groups from their Sr/Al ratios and Mn contents. Pr ions are preferentially doped in the particles with small Mn/ A1 ratios at x=0.2. With an increase in Pr concentration, the number of Pr-poor particles decreased and their Mn/Al ratios approached to those of Pr-rich particles at x=0.4. The substitution of Mn for Al site compensates excess charge of Pr3+ in the hexaaluminate lattice and leads to an increase of Mn in the hexaaluminate particle. It is considered that ease of reduction-oxidation cycle was influenced by the compensation and gave rise to increase in catalytic activity for... [Pg.422]

Thermal reduction at 623 K by means of CO is a common method of producing reduced and catalytically active chromium centers. In this case the induction period in the successive ethylene polymerization is replaced by a very short delay consistent with initial adsorption of ethylene on reduce chromium centers and formation of active precursors. In the CO-reduced catalyst, CO2 in the gas phase is the only product and chromium is found to have an average oxidation number just above 2 [4,7,44,65,66], comprised of mainly Cr(II) and very small amount of Cr(III) species (presumably as Q -Cr203 [66]). Fubini et al. [47] reported that reduction in CO at 623 K of a diluted Cr(VI)/Si02 sample (1 wt. % Cr) yields 98% of the silica-supported chromium in the +2 oxidation state, as determined from oxygen uptake measurements. The remaining 2 wt. % of the metal was proposed to be clustered in a-chromia-like particles. As the oxidation product (CO2) is not adsorbed on the surface and CO is fully desorbed from Cr(II) at 623 K (reduction temperature), the resulting catalyst acquires a model character in fact, the siliceous part of the surface is the same of pure silica treated at the same temperature and the anchored chromium is all in the divalent state. [Pg.11]

Abstract This review is a summary of supported metal clusters with nearly molecular properties. These clusters are formed hy adsorption or sirnface-mediated synthesis of metal carbonyl clusters, some of which may he decarhonylated with the metal frame essentially intact. The decarhonylated clusters are bonded to oxide or zeolite supports by metal-oxygen bonds, typically with distances of 2.1-2.2 A they are typically not free of ligands other than the support, and on oxide surfaces they are preferentially bonded at defect sites. The catalytic activities of supported metal clusters incorporating only a few atoms are distinct from those of larger particles that may approximate bulk metals. [Pg.211]

The typical solid catalyst used in technology consists of small catalytically active species, such as particles of metal, metal oxide, or metal sulfide, dispersed on a low-cost, high-area, nearly inert porous support such as a metal oxide or zeolite. The catalytic species are typically difficult to characterize in-... [Pg.211]

Ab initio methods allow the nature of active sites to be elucidated and the influence of supports or solvents on the catalytic kinetics to be predicted. Neurock and coworkers have successfully coupled theory with atomic-scale simulations and have tracked the molecular transformations that occur over different surfaces to assess their catalytic activity and selectivity [95-98]. Relevant examples are the Pt-catalyzed NO decomposition and methanol oxidation. In case of NO decomposition, density functional theory calculations and kinetic Monte Carlo simulations substantially helped to optimize the composition of the nanocatalyst by alloying Pt with Au and creating a specific structure of the PtgAu7 particles. In catalytic methanol decomposition the elementary pathways were identified... [Pg.25]


See other pages where Oxide particles catalytic activity is mentioned: [Pg.381]    [Pg.163]    [Pg.455]    [Pg.160]    [Pg.2702]    [Pg.262]    [Pg.528]    [Pg.2173]    [Pg.129]    [Pg.83]    [Pg.350]    [Pg.53]    [Pg.66]    [Pg.67]    [Pg.69]    [Pg.85]    [Pg.308]    [Pg.93]    [Pg.344]    [Pg.274]    [Pg.278]    [Pg.315]    [Pg.316]    [Pg.516]    [Pg.363]    [Pg.365]    [Pg.185]    [Pg.36]    [Pg.36]    [Pg.335]    [Pg.439]    [Pg.99]    [Pg.101]    [Pg.101]    [Pg.101]    [Pg.165]    [Pg.183]    [Pg.183]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



Activated oxidation

Activation oxidation

Active oxides

Active particles

Activity oxidation

Catalytic activity of oxide particles

Catalytic particles

Oxidative activation

Oxide particles

Oxides activated

Oxidizing activators

Particle oxidizers

Particles oxidation

© 2024 chempedia.info