Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide films at high temperatures

A bitumen sample is oxidized at high temperature under well defined conditions and its physical characteristics are measured before and after this artificiai ageing process. The method is defined in France as AFNOR T 66-032 and in the USA by ASTM D 2872 (Rolling Thin-Film Oven Test). [Pg.290]

Diffusion. Another technique for modifying the electrical properties of siUcon and siUcon-based films involves introducing small amounts of elements having differing electrical compositions, dopants, into substrate layers. Diffusion is commonly used. There are three ways dopants can be diffused into a substrate film (/) the surface can be exposed to a chemical vapor of the dopant at high temperatures, or (2) a doped-oxide, or (J) an ion-implanted layer can be used. Ion implantation is increasingly becoming the method of choice as the miniaturization of ICs advances. However, diffusion is used in... [Pg.349]

Under severe conditions and at high temperatures, noble metal films may fail by oxidation of the substrate base metal through pores in the film. Improved life may be achieved by first imposing a harder noble metal film, eg, rhodium or platinum—iridium, on the substrate metal. For maximum adhesion, the metal of the intermediate film should ahoy both with the substrate metal and the soft noble-metal lubricating film. This sometimes requires more than one intermediate layer. For example, silver does not ahoy to steel and tends to lack adhesion. A flash of hard nickel bonds weh to the steel but the nickel tends to oxidize and should be coated with rhodium before applying shver of 1—5 p.m thickness. This triplex film then provides better adhesion and gready increased corrosion protection. [Pg.251]

In a vacuum, uncoated molybdenum metal has an unlimited life at high temperatures. This is also tme under the vacuum-like conditions of outer space. Pure hydrogen, argon, and hehum atmospheres are completely inert to molybdenum at all temperatures, whereas water vapor, sulfur dioxide, and nitrous and nitric oxides have an oxidizing action at elevated temperatures. Molybdenum is relatively inert to carbon dioxide, ammonia, and nitrogen atmospheres up to about 1100°C a superficial nitride film may be formed at higher temperatures in the latter two gases. Hydrocarbons and carbon monoxide may carburize molybdenum at temperatures above 1100°C. [Pg.465]

Although our simple oxide film model explains most of the experimental observations we have mentioned, it does not explain the linear laws. How, for example, can a material lose weight linearly when it oxidises as is sometimes observed (see Fig. 21.2) Well, some oxides (e.g. M0O3, WO3) are very volatile. During oxidation of Mo and W at high temperature, the oxides evaporate as soon as they are formed, and offer no barrier at all to oxidation. Oxidation, therefore, proceeds at a rate that is independent of time, and the material loses weight because the oxide is lost. This behaviour explains the catastrophically rapid section loss of Mo and W shown in Table 21.2. [Pg.217]

Niobium finds use in the production of numerous stainless steels for use at high temperatures, and Nb/Zr wires are used in superconducting magnets. The extreme corrosion-resistance of tantalum at normal temperatures (due to the presence of an exceptionally tenacious film of oxide) leads to its application in the construction of chemical plant, especially where it can be used as a liner inside cheaper metals. Its complete inertness to body fluids makes it the ideal material for surgical use in bone repair and internal suturing. [Pg.978]

Aluminium is a very reactive metal with a high affinity for oxygen. The metal is nevertheless highly resistant to most atmospheres and to a great variety of chemical agents. This resistance is due to the inert and protective character of the aluminium oxide film which forms on the metal surface (Section 1.5). In most environments, therefore, the rate of corrosion of aluminium decreases rapidly with time. In only a few cases, e.g. in caustic soda, does the corrosion rate approximate to the linear. A corrosion rate increasing with time is rarely encountered with aluminium, except in aqueous solutions at high temperatures and pressures. [Pg.658]

The outstanding characteristics of the noble metals are their exceptional resistance to corrosive attack by a wide range of liquid and gaseous substances, and their stability at high temperatures under conditions where base metals would be rapidly oxidised. This resistance to chemical and oxidative attack arises principally from the Inherently high thermodynamic stability of the noble metals, but in aqueous media under oxidising or anodic conditions a very thin film of adsorbed oxygen or oxide may be formed which can contribute to their corrosion resistance. An exception to this rule, however, is the passivation of silver and silver alloys in hydrochloric or hydrobromic acids by the formation of relatively thick halide films. [Pg.923]

It is hardly surprising that the preparation of surfaces of plain specimens for stress-corrosion tests can sometimes exert a marked influence upon results. Heat treatments carried out on specimens after their preparation is otherwise completed can produce barely perceptible changes in surface composition, e.g. decarburisation of steels or dezincification of brasses, that promote quite dramatic changes in stress-corrosion resistance. Similarly, oxide films, especially if formed at high temperatures during heat treatment or working, may influence results, especially through their effects upon the corrosion potential. [Pg.1375]


See other pages where Oxide films at high temperatures is mentioned: [Pg.108]    [Pg.123]    [Pg.5264]    [Pg.108]    [Pg.795]    [Pg.5263]    [Pg.108]    [Pg.123]    [Pg.5264]    [Pg.108]    [Pg.795]    [Pg.5263]    [Pg.747]    [Pg.328]    [Pg.55]    [Pg.356]    [Pg.306]    [Pg.144]    [Pg.32]    [Pg.648]    [Pg.532]    [Pg.79]    [Pg.2284]    [Pg.260]    [Pg.436]    [Pg.119]    [Pg.388]    [Pg.225]    [Pg.780]    [Pg.441]    [Pg.593]    [Pg.246]    [Pg.533]    [Pg.2729]    [Pg.133]    [Pg.440]    [Pg.163]    [Pg.163]    [Pg.451]    [Pg.511]    [Pg.113]    [Pg.225]    [Pg.409]    [Pg.950]    [Pg.331]    [Pg.1076]    [Pg.139]    [Pg.431]   
See also in sourсe #XX -- [ Pg.123 , Pg.124 , Pg.129 , Pg.151 ]




SEARCH



High oxidation

High-temperature oxidation

Oxidation films

Oxide high-temperature

Temperature oxide

© 2024 chempedia.info