Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative aliphatic alcohols

The nature of the reducing agent, Red-H, has been the subject of a considerable amount of research. In most cases, and especially when oxygen containing heterocyclic monomers are used, the major reducing agents are alcohols which are present In these monomers as Impurities or as a result of hydrolysis. Further, Cu(II) compounds are known to oxidize aliphatic alcohols at elevated temperatures(10). Lastly, the addition of small amounts of such alcohols results In a reduction in the Inhibition period at the start of the polymerization and Increases the overall rate. [Pg.202]

Photocatalytic oxidation of lactic acid (600) on platinized Ti02 or CdS is strongly regioselective (Scheme 6.295).1553 Irradiation in the presence of Pt/TiCE at 360 420 nm leads to the cleavage oxidation products acetaldehyde and carbon dioxide, whereas pyruvic acid is exclusively obtained by irradiation of the Pt—CdS mixture at 440 520 nm. Since the standard potential of oxidation of acetic acid is known to be more positive than the valence band edge of CdS (CdS has a less positive valence band edge than does Ti02), both catalysts readily oxidize aliphatic alcohols and the CdS photocatalyst is apparently capable of specific oxidation. [Pg.450]

According to Ganem (11), N-oxyl radical can oxidize aliphatic alcohols to ketones. A similar reaction might be presumed between N-oxyl radical and IRGANOX 1010 (assumed also by Allen (12)), giving a resonance-stabilized quinone radical and a hydroxyl amine (Equation 1). This quinone is photoactive, and sensitizes the photooxidation of the polymer via hydrogen abstraction or hydroperoxide formation. [Pg.116]

This ladical-geneiating reaction has been used in synthetic apphcations, eg, aioyloxylation of olefins and aromatics, oxidation of alcohols to aldehydes, etc (52,187). Only alkyl radicals, R-, are produced from aliphatic diacyl peroxides, since decarboxylation occurs during or very shortiy after oxygen—oxygen bond scission in the transition state (187,188,199). For example, diacetyl peroxide is well known as a source of methyl radicals (206). [Pg.124]

Cobalt in Catalysis. Over 40% of the cobalt in nonmetaUic appHcations is used in catalysis. About 80% of those catalysts are employed in three areas (/) hydrotreating/desulfurization in combination with molybdenum for the oil and gas industry (see Sulfurremoval and recovery) (2) homogeneous catalysts used in the production of terphthaUc acid or dimethylterphthalate (see Phthalic acid and otherbenzene polycarboxylic acids) and (i) the high pressure oxo process for the production of aldehydes (qv) and alcohols (see Alcohols, higher aliphatic Alcohols, polyhydric). There are also several smaller scale uses of cobalt as oxidation and polymerization catalysts (44—46). [Pg.380]

Dimethyl sulfoxide reacts with trifluoroacetic anhydride at low tempera ture to give a complex that is an efficient reagent for the oxidation of alcohols to carbonyl compounds [40 41] This reagent can be used to oxidize primary and secondary aliphatic alcohols, cycloalkyl alcohols, and allylic, homoallylic, ben-zylic, acetylenic, and steroidal alcohols (equation 19)... [Pg.948]

Benzyl alcohol has the piopcities of an aliphatic alcohol, and not those of a phenol. On oxidation, it gives benzaldehyde and benzoic acid, and it foinis benzyl esters with acids or acid chlorides,... [Pg.300]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

Interestingly, free nano-iron oxide particles are active catalysts for the selective oxidation of alcohols to yield the corresponding aldehydes/ketones [72, 73]. Different aromatic alcohols and secondary aliphatic alcohols were oxidized with high selectivity, but at low conversion. Here, further improvement should be possible (Scheme 25). [Pg.104]

Under microwave irradiation and applying MCM-41-immobilized nano-iron oxide higher activity is observed [148]. In this case also, primary aliphatic alcohols could be oxidized. The TON for the selective oxidation of 1-octanol to 1-octanal reached to 46 with 99% selectivity. Hou and coworkers reported in 2006 an iron coordination polymer [Fe(fcz)2Cl2]-2CH30H with fez = l-(2,4-difluorophenyl)-l,l-bis[(l//-l,2,4-triazol-l-yl)methyl]ethanol which catalyzed the oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide as oxidant in 87% yield and up to 100% selectivity [149]. An alternative approach is based on the use of heteropoly acids, whereby the incorporation of vanadium and iron into a molybdo-phosphoric acid catalyst led to high yields for the oxidation of various alcohols (up to 94%) with molecular oxygen [150]. [Pg.104]

The oxidation of a series of meta- and para-substituted a-phenylethanols shows that electron-donating substituents facilitate reaction (p = —1.01) . A similar study of primary aliphatic alcohols confirmed this trend p = —1.06 + 0.06). [Pg.301]

Eichler B, B Schink (1984) Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140 147-152. [Pg.327]

Generally, primary aliphatic alcohols are oxidized to their respective aldehydes, secondary aliphatic and aromatic alcohols to the corresponding ketones, and allyl and benzyl alcohols to their carboxylic acid or carboxylate ions. For instance, 2-propanol, acetaldehyde, and methyl-benzoate ions are oxidized quantitatively to acetone, acetate, and terephtalate ion respectively, while toluene is converted into benzoate ion with an 86% yield. Controlling the number of coulombs passed through the solution allows oxidation in good yield of benzyl alcohol to its aldehyde. For diols,502 some excellent selectivity has been reached by changing the experimental conditions such as pH, number of coulombs, and temperature. [Pg.499]

Nitroxyl radicals (AmO ) are known to react rapidly with alkyl radicals and efficiently retard the radical polymerization of hydrocarbons [7]. At the same time, only aromatic nitroxyls are capable of reacting with alkylperoxyl radicals [10,39] and in this case the chain termination in the oxidation of saturated hydrocarbons occurs stoichiometrically. However, in the processes of oxidation of alcohols, alkenes, and primary and secondary aliphatic amines in which the chain reaction involves the HOT, >C(0H)02 , and >C(NHR)02 radicals, possessing the... [Pg.577]

Bashkirov A process for making aliphatic alcohols by oxidizing paraffins. The reaction is conducted in the presence of boric acid, which scavenges the hydroperoxide intermediates. Borate esters of secondary alcohols are formed as intermediates and then hydrolyzed. Developed in the USSR in the 1950s and now operated there and in Japan. [Pg.32]

Epal A process for making linear aliphatic alcohols by reacting ethylene with triethyl aluminum and oxidizing the products. Similar to Alfol, but incorporating a trans-alkylation stage that permits a wider range of products to be made. Developed by Ethyl Corporation (now Albermarle Corporation) and operated in the United States since 1964. [Pg.101]

Rhodium catalysts have also been used with increasing frequency for the allylic etherification of aliphatic alcohols. The chiral 7r-allylrhodium complexes generated from asymmetric ring-opening (ARO) reactions have been shown to react with both aromatic and aliphatic alcohols (Equation (46)).185-188 Mechanistic studies have shown that the reaction proceeds by an oxidative addition of Rh(i) into the oxabicyclic alkene system with retention of configuration, as directed by coordination of the oxygen atom, and subsequent SN2 addition of the oxygen nucleophile. [Pg.662]

Asymmetric induction has also been achieved in the cyclization of aliphatic alcohol substrates where the catalyst derived from a spirocyclic ligand differentiates enantiotopic alcohols and alkenes (Equation (114)).416 The catalyst system derived from Pd(TFA)2 and (—)-sparteine has recently been reported for a similar cyclization process (Equation (115)).417 In contrast to the previous cases, molecular oxygen was used as the stoichiometric oxidant, thereby eliminating the reliance on other co-oxidants such as GuCl or/>-benzoquinone. Additional aerobic Wacker-type cyclizations have also been reported employing a Pd(n) system supported by A-heterocyclic carbene (NHC) ligands.401,418... [Pg.681]

An interesting variant involves the use of an allylic alcohol as the alkene component. In this process, re-oxidation of the catalyst is unnecessary since the cyclization occurs with /Uoxygen elimination of the incipient cr-Pd species to effect an SN2 type of ring closure. Both five- and six-membered oxacycles have been prepared in this fashion using enol, hemiacetal, and aliphatic alcohol nucleophiles.439,440 With a chiral allylic alcohol substrate, the initial 7r-complexation may be directed by the hydroxyl group,441 as demonstrated by the diastereoselective cyclization used in the synthesis of (—)-laulimalide (Equation (120)).442 Note that the oxypalladation takes place with syn-selectivity, in analogy with the cyclization of phenol nucleophiles (1vide supra). [Pg.682]

Halogens, See also Bromine (Br) Chlorine (Cl) Fluorine (F) Iodine (I) higher aliphatic alcohols, 2 5 in N-halamines, 13 98 reactions with acetaldehyde, 1 105 reactions with acetone, 1 163 reactions with acetylene, 1 180 reactions with alkanolamines from olefin oxides and ammonia, 2 125—126 reactions with aluminum, 2 284—285, 349-359... [Pg.417]

The ALDs are a subset of the superfamily of medium-chain dehydrogenases/reductases (MDR). They are widely distributed, cytosolic, zinc-containing enzymes that utilize the pyridine nucleotide [NAD(P)+] as the catalytic cofactor to reversibly catalyze the oxidation of alcohols to aldehydes in a variety of substrates. Both endobiotic and xenobiotic alcohols can serve as substrates. Examples include (72) ethanol, retinol, other aliphatic alcohols, lipid peroxidation products, and hydroxysteroids (73). [Pg.60]

Few studies have systematically examined how chemical characteristics of organic reductants influence rates of reductive dissolution. Oxidation of aliphatic alcohols and amines by iron, cobalt, and nickel oxide-coated electrodes was examined by Fleischman et al. (38). Experiments revealed that reductant molecules adsorb to the oxide surface, and that electron transfer within the surface complex is the rate-limiting step. It was also found that (i) amines are oxidized more quickly than corresponding alcohols, (ii) primary alcohols and amines are oxidized more quickly than secondary and tertiary analogs, and (iii) increased chain length and branching inhibit the reaction (38). The three different transition metal oxide surfaces exhibited different behavior as well. Rates of amine oxidation by the oxides considered decreased in the order Ni > Co >... [Pg.457]

C. Lamy, E. M. Belgsir, and J.-M. Leger, Electrocatalytic oxidation of aliphatic alcohols Application to the direct alcohol fuel cell (DAFC), J. Appl. Electrochem. 31, 799-809 (2001). [Pg.323]

Direct electrochemical oxidation is not a convenient way for a preparative production of carbonyl compounds from alcohols due to the unselectivity caused by the high oxidation potentials of alcohols. Thus, there have been only a few compounds (some aliphatic alcohols, glycols, and related alcohols) that have been oxidized by the direct method, while the indirect method has often been used to oxidize selectively a variety of alcohols, since it does not... [Pg.173]


See other pages where Oxidative aliphatic alcohols is mentioned: [Pg.205]    [Pg.205]    [Pg.21]    [Pg.137]    [Pg.992]    [Pg.278]    [Pg.1564]    [Pg.227]    [Pg.570]    [Pg.276]    [Pg.308]    [Pg.76]    [Pg.21]    [Pg.157]    [Pg.277]    [Pg.654]    [Pg.65]    [Pg.26]    [Pg.767]    [Pg.257]    [Pg.481]    [Pg.595]    [Pg.698]    [Pg.188]    [Pg.431]    [Pg.462]    [Pg.50]   
See also in sourсe #XX -- [ Pg.83 , Pg.84 ]




SEARCH



Aliphatic alcohols

Aliphatic oxidation

© 2024 chempedia.info