Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative addition catalysis

On the other hand, the halohydrin (chloro and bromo) 908 is converted into a ketone via oxidative addition and //-elimination in boiling benzene with catalysis by Pd(OAc)2 and tri(o-tolyl)phosphine in the presence of K2C03[765,766],... [Pg.261]

The presence of redox catalysts in the electrode coatings is not essential in the c s cited alx)ve because the entrapped redox species are of sufficient quantity to provide redox conductivity. However, the presence of an additional redox catalyst may be useful to support redox conductivity or when specific chemical redox catalysis is used. An excellent example of the latter is an analytical electrode for the low level detection of alkylating agents using a vitamin 8,2 epoxy polymer on basal plane pyrolytic graphite The preconcentration step involves irreversible oxidative addition of R-X to the Co complex (see Scheme 8, Sect. 4.4). The detection by reductive voltammetry, in a two electron step, releases R that can be protonated in the medium. Simultaneously the original Co complex is restored and the electrode can be re-used. Reproducible relations between preconcentration times as well as R-X concentrations in the test solutions and voltammetric peak currents were established. The detection limit for methyl iodide is in the submicromolar range. [Pg.76]

The acrylate complex 10 was suggested to be the major solution species during catalysis, since the equilibrium in Scheme 5-11, Eq. (2) lies to the right (fQq > 100)-Phosphine exchange at Pt was observed by NMR, but no evidence for four-coordinate PtL, was obtained. These observations help to explain why the excess of phosphine present (both products and starting materials) does not poison the catalyst. Pringle proposed a mechanism similar to that for formaldehyde and acrylonitrile hydrophosphination, involving P-H oxidative addition, insertion of olefin into the M-H bond, and P-C reductive elimination (as in Schemes 5-3 and 5-5) [11,12]. [Pg.149]

Recently, Y. Yamamoto reported a palladium-catalyzed hydroalkoxylation of methylene cyclopropanes (Scheme 6-25) [105]. Curiously, the catalysis proceeds under very specific conditions, i.e. only a 1 2 mixture of [Pd(PPh3)4] and P(o-tolyl)3 leads to an active system. Other combinations using Pd(0 or II) precursors with P(o-tolyl)3 or l,3-bis(diphenylphosphino)propane, the use of [Pd(PPh3)4] without P(o-tolyl)3 or with other phosphine ligands were all inefficient for the hydroalkoxylation. The authors assumed a mechanism in which oxidative addition of the alcohol to a Pd(0) center yields a hydrido(alkoxo) complex which is subsequently involved in hydropal-ladation of methylenecyclopropane. [Pg.206]

Catecholborane and pinacolborane are especially useful in hydroborations catalyzed by transition metals.163 Wilkinson s catalyst Rh(PPh3)3Cl is among those used frequently.164 The general mechanism for catalysis is believed to be similar to that for homogeneous hydrogenation and involves oxidative addition of the borane to the metal, generating a metal hydride.165... [Pg.341]

Platinum(O) phosphine complexes undergo a variety of oxidative addition reactions with compounds containing Group 14 elements. These reactions are of widespread interest because similar processes are probably involved in the catalysis by platinum complexes of reactions such as the hydrosilation of alkenes and the disilylation of dienes and alkenes. [Pg.678]

In summary, these results demonstrate that air-stable POPd, POPdl and POPd2 complexes can be directly employed to mediate the rate-limiting oxidative addition of unactivated aryl chlorides in the presence of bases, and that such processes can be incorporated into efficient catalytic cycles for a variety of cross-coupling reactions. Noteworthy are the efficiency for unactivated aryl chlorides simplicity of use, low cost, air- and moisture-stability, and ready accessibility of these complexes. Additional applications of these air-stable palladium complexes for catalysis are currently under investigation. [Pg.180]

The intramolecular arylation of sp3 C-H bonds is observed in the reaction of l-/ r/-butyl-2-iodobenzene under palladium catalysis (Equation (71)) 94 94a 94b The oxidative addition of Arl to Pd(0) gives an ArPdl species, which undergoes the electrophilic substitution at the tert-butyl group to afford the palladacycle. To this palladacycle, another molecule of Arl oxidatively adds, giving the Pd(iv) complex. [Pg.231]

Key words ONIOM, hydrogenation, enantioselectivity, asymmetric catalysis, DFT, reaction mechanism, chiral phosphine, ab initio, valence bond, oxidative addition, migratory insertion, reductive elimination. [Pg.107]

Oxidative addition involving carbon-to-oxygen bonds is of relevance to the catalysis with palladium complexes. The most reactive carbon-oxygen bond is that between allylic fragments and carboxylates. The reaction starts with a palladium zero complex and the product is a ir-allylic palladium(II) carboxylate Figure 2.16. [Pg.38]

The breaking of carbon-to-phosphorus bonds is by itself not a useful reaction in homogeneous catalysis. It is an undesirable side-reaction that occurs in systems containing transition metals and phosphine ligands and that leads to deactivation of the catalysts. Two reaction pathways can be distinguished, oxidative addition and nucleophilic attack at the co-ordinated phosphorus atom (Figure 2.35). [Pg.52]

Reaction (9) generates methyl iodide for the oxidative addition, and reaction (10) converts the reductive elimination product acetyl iodide into the product and it regenerates hydrogen iodide. There are, however, a few distinct differences [2,9] between the two processes. The thermodynamics of the acetic anhydride formation are less favourable and the process is operated much closer to equilibrium. (Thus, before studying the catalysis of carbonylations and carboxylations it is always worthwhile to look up the thermodynamic data ) Under standard conditions the AG values are approximately ... [Pg.116]

Systems based on complex lithium tetraborohydrate are of interest because of its large hydrogen capacity (ca. 18.3 wt%). However the material requires large energy input to release stored hydrogen (AH = 66.9 kJ mol"1 H2 7). Work into the catalysis of the system has focused on chloride and oxide additions however these reduce the overall system capacity 7. [Pg.97]


See other pages where Oxidative addition catalysis is mentioned: [Pg.7206]    [Pg.7206]    [Pg.263]    [Pg.524]    [Pg.350]    [Pg.165]    [Pg.494]    [Pg.186]    [Pg.70]    [Pg.21]    [Pg.301]    [Pg.66]    [Pg.120]    [Pg.158]    [Pg.303]    [Pg.308]    [Pg.65]    [Pg.100]    [Pg.740]    [Pg.583]    [Pg.643]    [Pg.155]    [Pg.84]    [Pg.334]    [Pg.342]    [Pg.343]    [Pg.348]    [Pg.356]    [Pg.483]    [Pg.74]    [Pg.308]    [Pg.519]    [Pg.337]    [Pg.141]    [Pg.218]    [Pg.112]    [Pg.97]   


SEARCH



Additives catalysis

Catalysis oxidative addition/reductive elimination

Homogeneous catalysis oxidative addition

Oxidation catalysis

Oxidative addition palladium catalysis

Oxides catalysis

© 2024 chempedia.info