Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation catalysis alcohols

Autoclave reactions involving ethylene oxide with alkanethiols or an (unspecified) alcohol went out of control and exploded violently. Similar previous reactions had been uneventful [1], An arenethiol was being reacted with ethylene oxide under catalysis by a fraction of a percent of sodium hydroxide (solid) dissolved in the thiol to which the oxirane was slowly charged. After an initial exotherm a white solid precipitated, the exotherm died away and later resumed, with dissolution of the solid, the reaction then running out of control from the backlog of charged oxirane [2],... [Pg.314]

Other important successes have been achieved in developing clean, green, methods to oxidize alcohols, for example, the Ru/TEMPO (tetramethylpiperidiny-loxyl radical) catalysis, shown in Figure 9.4, for the aerobic oxidation of alcohols. ... [Pg.194]

Several arylboron compounds bearing electron-withdrawing aromatic groups have been examined as catalysts for the OPP oxidation of (5)-perillyl alcohol. Catalysis has been performed with 1 to 2 mol % catalyst in the presence of 6 equiv. pivalaldehyde as hydride acceptor in toluene or benzene solution. Representative results are summarized in Table 1. [Pg.122]

Chromium compounds decompose primary and secondary hydroperoxides to the corresponding carbonyl compounds, both homogeneously and heterogeneously (187—191). The mechanism of chromium catalyst interaction with hydroperoxides may involve generation of hexavalent chromium in the form of an alkyl chromate, which decomposes heterolyticaHy to give ketone (192). The oxidation of alcohol intermediates may also proceed through chromate ester intermediates (193). Therefore, chromium catalysis tends to increase the ketone alcohol ratio in the product (194,195). [Pg.343]

Polymerization to Polyether Polyols. The addition polymerization of propylene oxide to form polyether polyols is very important commercially. Polyols are made by addition of epoxides to initiators, ie, compounds that contain an active hydrogen, such as alcohols or amines. The polymerization occurs with either anionic (base) or cationic (acidic) catalysis. The base catalysis is preferred commercially (25,27). [Pg.134]

Hydrogen Sulfide andMercaptans. Hydrogen sulfide and propylene oxide react to produce l-mercapto-2-propanol and bis(2-hydroxypropyl) sulfide (69,70). Reaction of the epoxide with mercaptans yields 1-aLkylthio- or l-arylthio-2-propanol when basic catalysis is used (71). Acid catalysts produce a mixture of primary and secondary hydroxy products, but ia low yield (72). Suitable catalysts iaclude sodium hydroxide, sodium salts of the mercaptan, tetraaLkylammonium hydroxide, acidic 2eohtes, and sodium salts of an alkoxylated alcohol or mercaptan (26,69,70,73,74). [Pg.135]

Silver carbonate, alone or on CeHte, has been used as a catalyst for the oxidation of methyl esters of D-fmctose (63), ethylene (64), propylene (65), trioses (66), and a-diols (67). The mechanism of the catalysis of alcohol oxidation by silver carbonate on CeHte has been studied (68). [Pg.92]

When heated in the presence of a carboxyHc acid, cinnamyl alcohol is converted to the corresponding ester. Oxidation to cinnamaldehyde is readily accompHshed under Oppenauer conditions with furfural as a hydrogen acceptor in the presence of aluminum isopropoxide (44). Cinnamic acid is produced directly with strong oxidants such as chromic acid and nickel peroxide. The use of t-butyl hydroperoxide with vanadium pentoxide catalysis offers a selective method for epoxidation of the olefinic double bond of cinnamyl alcohol (45). [Pg.175]

Cobalt in Catalysis. Over 40% of the cobalt in nonmetaUic appHcations is used in catalysis. About 80% of those catalysts are employed in three areas (/) hydrotreating/desulfurization in combination with molybdenum for the oil and gas industry (see Sulfurremoval and recovery) (2) homogeneous catalysts used in the production of terphthaUc acid or dimethylterphthalate (see Phthalic acid and otherbenzene polycarboxylic acids) and (i) the high pressure oxo process for the production of aldehydes (qv) and alcohols (see Alcohols, higher aliphatic Alcohols, polyhydric). There are also several smaller scale uses of cobalt as oxidation and polymerization catalysts (44—46). [Pg.380]

Catalysis is utilized in the majority of new paper filter cure ovens as part of the oven recirculation/bumer system which is designed to keep the oven interior free of condensed resins and provide an exhaust without opacity or odor. The apphcation of catalytic fume control to the exhaust of paper-impregnation dryers permits a net fuel saving by oxidation of easy-to-bum methyl or isopropyl alcohol, or both, at adequate concentrations to achieve a 110—220°C exotherm. [Pg.515]

Resoles are usually those phenolics made under alkaline conditions with an excess of aldehyde. The name denotes a phenol alcohol, which is the dominant species in most resoles. The most common catalyst is sodium hydroxide, though lithium, potassium, magnesium, calcium, strontium, and barium hydroxides or oxides are also frequently used. Amine catalysis is also common. Occasionally, a Lewis acid salt, such as zinc acetate or tin chloride will be used to achieve some special property. Due to inclusion of excess aldehyde, resoles are capable of curing without addition of methylene donors. Although cure accelerators are available, it is common to cure resoles by application of heat alone. [Pg.874]

The Sharpless-Katsuki asymmetric epoxidation (AE) procedure for the enantiose-lective formation of epoxides from allylic alcohols is a milestone in asymmetric catalysis [9]. This classical asymmetric transformation uses TBHP as the terminal oxidant, and the reaction has been widely used in various synthetic applications. There are several excellent reviews covering the scope and utility of the AE reaction... [Pg.188]


See other pages where Oxidation catalysis alcohols is mentioned: [Pg.92]    [Pg.206]    [Pg.525]    [Pg.1717]    [Pg.28]    [Pg.4]    [Pg.83]    [Pg.206]    [Pg.228]    [Pg.92]    [Pg.3]    [Pg.24]    [Pg.739]    [Pg.98]    [Pg.263]    [Pg.384]    [Pg.515]    [Pg.506]    [Pg.134]    [Pg.134]    [Pg.377]    [Pg.170]    [Pg.84]    [Pg.208]    [Pg.126]    [Pg.149]    [Pg.394]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Alcohol oxide catalysis

Alcohols catalysis

Oxidation catalysis

Oxides catalysis

© 2024 chempedia.info