Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation with carbonyl compounds

The ff-oxidation of carbonyl compounds may be performed by addition of molecular oxygen to enolate anions and subsequent reduction of the hydroperoxy group, e.g. with triethyl phosphite (E.J. Bailey, 1962 J.N. Gardner, 1968 A,B). If the initially formed a-hydroperoxide possesses another enolizable a-proton, dehydration to the 1,2-dione occurs spontaneously, and further oxidation to complex product mitctures is usually observed. [Pg.121]

Phosphine oxides may be prepared by the acid-cataly2ed reaction of phosphine with carbonyl compounds such as ketones (94). [Pg.382]

PUtzing erReaction. Quinoline-4-carboxyhc acids are easily prepared by the condensation of isatin [91-56-5] (16) with carbonyl compounds (50). The products may be decarboxylated to the corresponding quinolines. The reaction of isatin with cycHc ketones has been reported, eg, the addition of cyclohexanone gives the tricycHc intermediate (17) [38186-54-8] which upon oxidation produces quinoline-2,3,4-tricarboxyhc acid [16880-83-4] (51). [Pg.391]

These reactions differ from those of sulfur tetrafluoride with carbonyl compounds in that a formal oxidation-reduction of the sulfur atoms m the thiocarbonyl compound and sulfur tetrafluoride molecule occurs, resulting in the formation of free sulfur and the complete utilization of the fluorine atoms in sulfur tetrafluoride. [Pg.267]

Allyl anion synthons A and C, bearing one or two electronegative hetero-substituents in the y-position are widely used for the combination of the homoenolate (or / -enolate) moiety B or D with carbonyl compounds by means of allylmetal reagents 1 or 4, since hydrolysis of the addition products 2 or 5 leads to 4-hydroxy-substituted aldehydes or ketones 3, or carboxylic acids, respectively. At present, 1-hetero-substituted allylmetal reagents of type 1, rather than 4, offer the widest opportunity for the variation of the substitution pattern and for the control of the different levels of stereoselectivity. The resulting aldehydes of type 3 (R1 = H) are easily oxidized to form carboxylic acids 6 (or their derivatives). [Pg.226]

Dithioacetal monoxide anions react with carbonyl compounds in a similar way affording the corresponding a-hydroxy aldehyde dithioacetal oxides 428. Ogura and Tsuchihashi, who performed this reaction for the first time using the anion of methyl methylthiomethyl sulphoxide 324, obtained in this way a series of a-hydroxyaldehydes 429504 (equation 257). [Pg.330]

NMR spectroscopic studies f111,13C, and 31P) are consistent with the dipolar ylide structure and suggest only a minor contribution from the ylene structure.234 Theoretical calculations support this view.235 The phosphonium ylides react with carbonyl compounds to give olefins and the phosphine oxide. [Pg.158]

Nitrones have been generally prepared by the condensation of /V-hydroxylamines with carbonyl compounds (Eq. 8.40).63 There are a number of published procedures, including dehydrogenation of /V,/V-disubstituted hydroxylamines, / -alkylation of imines, and oxidation of secondary amines. Among them, the simplest method is the oxidation of secondary amines with H202 in the presence of catalytic amounts of Na2W04 this method is very useful for the preparation of cyclic nitrones (Eq. 8.41).64... [Pg.249]

The carbonyl-reactive group on these crosslinkers is a hydrazide that can form hydrazone bonds with aldehyde residues. To utilize this functional group with carbohydrate-containing molecules, the sugars first must be mildly oxidized to contain aldehyde groups by treatment with sodium periodate. Oxidation with this compound will cleave adjacent carbon-carbon bonds which possess hydroxyl groups, as are abundant in polysaccharide molecules (Chapter 1, Sections 2 and 4.4). [Pg.298]

KMn04 impregnated alumina oxidizes arenes to ketones within 10-30 min under solvent-free conditions using focused microwaves [111]. /i,/i-Disubstituted enamines have been successfully oxidized into carbonyl compounds with KMn04-Al203 in domestic (255 W, 82 °C) and in focused microwave ovens (330 W, 140 °C) under sol-vent-free conditions by Hamelin et al. [112]. The yields are better in the latter case. When the same reactions are conducted in an oil bath at 140 °C, no carbonyl compound formation is observed (Scheme 6.36). [Pg.200]

The reaction of these aldehydes, derived from periodate oxidation, with carbonyl reagents has also been investigated. Studies 147 148 were made on oxidized laminarin, a (1 —> 3)-linked polysaccharide, in which only the terminal residues had been oxidized. The addition of phenylhydrazine acetate detached the remainder of the terminal residue as glyoxal phenyl-osazone. When the aldehydic compounds derived from the periodate oxidation of raffinose and trehalose818a were reacted with p-nitrophenylhydrazine, the authors were surprised to find that one molecule of oxidized raffinose, containing six aldehydic functions, reacts with only three molecules of the reagent, and that the four aldehydic functions of the oxidized trehalose molecule react with only two. The reactions of periodate-oxidized carbo-... [Pg.26]

Third, the Mn3+ ions formed in the reactions of Mn2+ with ROOH and RO2 successfully react rather rapidly and oxidize the carbonyl compounds... [Pg.402]

Analogous to its reaction with carbonyl compounds (see 6.3.4), benzyltrimethyl-silane undergoes a fluoride-induced nucleophilic substitution reaction on pyridine-1-oxides and quinoline-l-oxide to form 2-benzylpyridines (>70%) and 2-benzyl-quinoline (65%), respectively [57], Allyltrimethylsilane reacts with pyridine-l-oxide to produce 2-propenylpyridine (56%). [Pg.298]

The mechanism of the Zn chloride-assisted, palladium-catalyzed reaction of allyl acetate (456) with carbonyl compounds (457) has been proposed [434]. The reaction involves electroreduction of a Pd(II) complex to a Pd(0) complex, oxidative addition of the allyl acetate to the Pd(0) complex, and Zn(II)/Pd(II) transmetallation leading to an allylzinc reagent, which would react with (457) to give homoallyl alcohols (458) and (459) (Scheme 157). Substituted -lactones are electrosynthesized by the Reformatsky reaction of ketones and ethyl a-bromobutyrate, using a sacrificial Zn anode in 35 92% yield [542]. The effect of cathode materials involving Zn, C, Pt, Ni, and so on, has been investigated for the electrochemical allylation of acetone [543]. [Pg.583]

Allyltin difluoroiodide, formed in situ by the oxidative addition of stannous fluoride to allyl iodide, is found to react with carbonyl compounds to give the corresponding homoallylic alcohols in excellent yields under mild reaction conditions (9). [Pg.281]

Various nitro compounds have been condensed with carbonyl compounds in reactions catalyzed by alkaline earth metal oxides and hydroxides 145). It was found that the reactivities of the nitro compounds were in the order nitro-ethane > nitromethane > 2-nitropropane, and those of carbonyl compounds were propionaldehyde > isobutyraldehyde > pivalaldehyde > acetone > benzaldehyde > methyl propionate. Among the catalysts examined, MgO, CaO, Ba(OH)2, and Sr(OH)2, exhibited high activity for nitroaldol reaction of nitromethane with propionaldehyde. In reactions with these catalysts, the yields were between 60% (for MgO) and 26% (for Sr(OH)2) at 313 K after 1 h in a batch reactor. On Mg(OH)2, Ca(OH)2, and BaO, the yields were in the range of 3.8% (for BaO) and 17.5% (for Mg(OH)2). Investigation of the influence of the pre-treatment... [Pg.260]

The A -l,2,3,5-thiatriazoline A-oxides (20) are stable at room temperature but are easily hydrolyzed <85TL6155>. Sulfinylamines are known to react with carbonyl compounds and so with R = CHjCOPh, R = Me, an intramolecular trapping of the carbonyl group leading to a 6-membered pyrazine might have been expected. However, even in this case, the 1,2,3,5-thiatriazole S-oxide was formed due to preferential reaction with the highly nucleophilic nitrogen over cycloaddition <86H(24)1193>. [Pg.739]

According to the Cd 18-90 AOCS ° official method, the ANV is 100 times the optical density measured in a 1 cm cell, at 350 nm, of a solution containing 1.00 g of oil in 100 ml of the test solution. The measured absorbance is due to Schiff bases (167) formed when p-anisidine (166) undergoes condensation reaction with carbonyl compounds, according to equation 55. The carbonyl compounds are secondary oxidation products of lipids, such as a, S-unsaturated aldehydes and ketones derived from the hydroperoxides (see Scheme 1 in Section n.A.2.c), and their presence points to advanced oxidation of the oil. [Pg.666]

Condensation of A -acylglycines with carbonyl compounds, the Erlenmeyer synthesis, continues to be exploited to prepare of a wide variety of unsaturated-5(47/)-oxazolones. The reaction is performed in the presence of a cyclodehydrating agent and recently bismuth(lll) acetate has been evaluated in this capacity. Alternatively, unsaturated 5(47/)-oxazolones can be obtained from hippuric acid and a carbonyl compound or from the appropriate dehydroamino acid derivative using 3-(aIkoxycarbonyl)benzotriazole-l-oxides as the cyclodehydrating agent. [Pg.292]

Regiospecific and enantioselective aldol reactions 168) were also performed with SAMP (137). Lithiated hydrazones obtained from ketones (154) as described above were alkylated with carbonyl compounds and the adducts then treated with chloro-trimethylsilane. The resulting trimethylsilylethers (155) were finally oxidatively hydrolyzed to yield the chiral (3-hydroxyketones (156) (e.e. = 31-62%)168),... [Pg.208]

The physical and chemical properties of the X -phosphorins 118 and 120 are comparable to those of phosphonium ylids which are resonance-stabilized by such electron-pulling groups as carbonyl or nitrile substituents Thus they can be viewed as cyclic resonance-stabilized phosphonium ylids 118 b, c, d). As expected, they do not react with carbonyl compounds giving the Wittig olefin products. However, they do react with dilute aqueous acids to form the protonated salts. Similarly, they are attacked at the C-2 or C-4 positions by alkyl-, acyl- or diazo-nium-ions Heating with water results in hydrolytic P—C cleavage, phosphine oxide and the hydrocarbon being formed. [Pg.70]

Oxidation. Alcohols with at least one H on the carbinol carbon (1° and 2°) are oxidized to carbonyl compounds. [Pg.277]


See other pages where Oxidation with carbonyl compounds is mentioned: [Pg.29]    [Pg.29]    [Pg.226]    [Pg.340]    [Pg.607]    [Pg.735]    [Pg.780]    [Pg.218]    [Pg.121]    [Pg.323]    [Pg.260]    [Pg.165]    [Pg.447]    [Pg.70]    [Pg.580]    [Pg.97]    [Pg.210]    [Pg.558]    [Pg.562]    [Pg.218]    [Pg.303]    [Pg.757]    [Pg.156]    [Pg.257]    [Pg.212]    [Pg.249]   
See also in sourсe #XX -- [ Pg.3 , Pg.602 ]

See also in sourсe #XX -- [ Pg.3 , Pg.602 ]




SEARCH



Carbonyl oxidation

Carbonyl oxide

Carbonylation oxide

Oxidation carbonylative

Oxidation of Alcohols to Carbonyl Compounds with Activated Dimethyl Sulfoxide via Alkoxysulfonium Ylides. The Swern, Moffatt, and Related Oxidations

Oxidation oxidative carbonylation

Oxidative carbonylation

Oxidative carbonylations

With Carbonyl Compounds

© 2024 chempedia.info