Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation redox mechanism

Mere O S IS uii oxygen uluiii on tlic oxide surlacc and S is a vaeaiU site on the surface caused by the removal of an oxygen atom. According to this scheme, the water-gas shift reaction proceeds via alternate oxidation and reduction of the partially reduced surface of the oxide (redox mechanism). [Pg.56]

At the same time, a fundamental understanding of supercapacitor design, operation, performance, and component optimization led to improvements of supercapacitor performance, particularly increasing their energy density. To further increase energy density, more advanced supercapacitors called pseudocapacitors, in which the electroactive materials are composited with carbon particles to form composite electrode materials, were developed. The electrochemical reaction of the electroactive material in a pseudocapacitor takes place at the interface between the electrode and electrolyte via adsorption, intercalation, or reduction-oxidation (redox) mechanisms. In this way, the capacitance of the electrode and the energy density can be increased significantly. [Pg.38]

The rate of peroxide decomposition and the resultant rate of oxidation are markedly increased by the presence of ions of metals such as iron, copper, manganese, and cobalt [13]. This catalytic decomposition is based on a redox mechanism, as in Figure 15.2. Consequently, it is important to control and limit the amounts of metal impurities in raw rubber. The influence of antioxidants against these rubber poisons depends at least partially on a complex formation (chelation) of the damaging ion. In favor of this theory is the fact that simple chelating agents that have no aging-protective activity, like ethylene diamine tetracetic acid (EDTA), act as copper protectors. [Pg.466]

Our study was focused on the influence of reducing power on the selective oxidation of H2S over the various transition metal oxides, which would be proceeded by the redox mechanism [5,6]. The redox mechanism and the reducing power [7] in selective oxidation of H2S can be defined as follows ... [Pg.425]

Selective oxidation and ammoxldatlon of propylene over bismuth molybdate catalysts occur by a redox mechanism whereby lattice oxygen (or Isoelectronlc NH) Is Inserted Into an allyllc Intermediate, formed via or-H abstraction from the olefin. The resulting anion vacancies are eventually filled by lattice oxygen which originates from gaseous oxygen dlssoclatlvely chemisorbed at surface sites which are spatially and structurally distinct from the sites of olefin oxidation. Mechanistic details about the... [Pg.28]

In the cases of the selective oxidation reactions over metal oxide catalysts the so-called Mars-van Krevelen or redox mechanism [4], involving nucleophilic oxide ions 0 is widely accepted. A possible role of adsorbed electrophilic oxygen (molecularly adsorbed O2 and / or partially reduced oxygen species like C , or 0 ) in complete oxidation has been proposed by Haber (2]. However, Satterfield [1] queried whether surface chemisorbed oxygen plays any role in catalytic oxidation. [Pg.484]

It is well known also that higher alkanes suffer radical gas phase oxidation above 723 K. Therefore, their use requires catalysts active and selective for deNOx at lower temperatures. The mechanism of NOx elimination is still debated a redox mechanism involving Cu ions is probable, and isolated Cu cations exchanged into MFI [4,5] or mordenite [6] have been found to be more active than CuO clusters. It must be emphasized, however, that acid zeolites exhibit good activity at high temperature, and acid mechanisms have been proposed [7-10]. In presence of Cu this acid mechanism disappears probably due to the decrease of the acidity of mordenite upon Cu exchange [6]. According to... [Pg.621]

Reasonable NO conversion can be achieved using n-decane as reductant. In the absence of sulfur dioxide, the catalytic activity is roughly related to the r ucibility of the Cu phase of Cu ions in zeolites the reaction temperature needed to reach 20% NO conversion parallels that of the TPR peak (Table 7). This relation also practically holds for Cu on simple oxides, therefore a redox mechanism in which reduction of Cu + cations is the slow step could account for the results. [Pg.627]

The presence of V V on the surface before catalysis is unessential for catalytic activity. We cannot however rule out an SCR redox mechanism involving VV-V V. ESR and IR results show that the oxidation state of surface vanadium at the reaction temperature is controlled mainly by the composition of the reactant mixture. [Pg.699]

By-products from capture of nucleophilic anions may be observed.53 Phenols can be formed under milder conditions by an alternative redox mechanism.98 The reaction is initiated by cuprous oxide, which effects reduction and decomposition to an aryl radical, and is run in the presence of Cu(II) salts. The radical is captured by Cu(II) and converted to the phenol by reductive elimination. This procedure is very rapid and gives good yields of phenols over a range of structural types. [Pg.1030]

A redox mechanism. An oxidized form of a more efficient component of a synergic mixture is reduced by the presence of a less reactive component. Example aromatic amines + phenols. [Pg.458]

Reductive and oxidative transformations of small ring compounds form the basis of a variety of versatile synthetic methods which include functionalization and carbon skeleton construction. Redox mechanisms of organotransition metal compounds play an important role in inducing or catalyzing specific reactions. Another useful route in this area is based on one-electron redox reactions. The redox tautomerism of dialkyl phosphonate also contributes to the efficiency of the reductive transformation of small ring compounds. This review summarizes selective transformations which have a high potential for chemical synthesis. [Pg.107]

At high anodic potentials Prussian blue converts to its fully oxidized form as is clearly seen in cyclic voltammograms due to the presence of the corresponding set of peaks (Fig. 13.2). The fully oxidized redox state is denoted as Berlin green or in some cases as Prussian yellow . Since the presence of alkali metal ions is doubtful in the Prussian blue redox state, the most probable mechanism for charge compensation in Berlin green/Prussian blue redox activity is the entrapment of anions in the course of oxidative reaction. The complete equation is ... [Pg.438]

Mechanism 3 involves NiOH in at least three reactions, and Ni(OH)2 as the active Ni reactant in solution. Since increasing the concentration of the complex-ant(s) in solution will reduce the concentration of both unhydrolyzed and hydrolyzed metal ions, arguments of complexation cannot be readily employed to either support or discount this mechanism. However, it has been this author s experience in formulating electroless Co-P solutions with various complexants for Co2+ that improper complexation which results in even a faint precipitate of hydrolyzed cobalt ions yields an inactive electroless Co-P solution. Furthermore, anodic oxidation of hypo-phosphite at Ni anodes does not proceed at a significant rate under conditions where the surface is most probably covered with a passive film of nickel oxide [48], e.g. NiO.H20, which would be expected to oxidize the reducing agent via a cyclic redox mechanism. [Pg.235]

Eisenberg et ah—the redox mechanistic perspective over Rh and Pt/Sn systems. The term redox mechanism in catalysis is used to describe cases where the catalyst itself undergoes changes in oxidation state during the course of the mechanism. It does not refer to the oxidation state changes of reactants, products, or associated intermediates, although associated intermediates are often involved in the course of the mechanism. [Pg.131]

B. Better tools available, but no consensus on mechanism or active site—1980 to 2006. Rhodes et al.291 published a comprehensive review on the heterogeneously catalyzed water-gas shift mechanism in 1995. Included in that discussion was the copper/zinc oxide/alumina system. The conclusion was that this system appears to be constructed of small metallic islands of copper resting on a zinc oxide alumina phase. Zinc oxide may exert some impact on catalytic activity, but it was suggested in the review that the contribution is small. It was indicated that strong evidence exists to support either a formate or a redox mechanism, and the authors even suggest the possibility that both mechanisms might occur, though insufficient data exist to determine which mechanism predominates. [Pg.180]

Fiolitakis and Hofmann—wavefront analysis supports Eley-Rideal/redox mechanisms. In 1982 and 1983, Fiolitakis and Hofmann231,232 carried out wavefront analysis to analyze the dependence of the microkinetics of the water-gas shift reaction on the oxidation state of CuO/ZnO. They observed three important mechanisms after treatment of the catalyst surface with different H20/H2 ratios. These included two Eley-Rideal mechanisms which converted the reactants via adsorbed intermediates, and a redox mechanism that regulated the oxygen activity, as shown in Scheme 56. The authors indicated that different mechanisms could be dominating at different sections along the length of the fixed bed reactor. [Pg.182]

The authors explained the findings in terms of a mechanism involving both the metal and the oxide, where the oxide activates H20 with CO adsorption on the metal. They indicated either a redox mechanism or an associative (e.g., formate)... [Pg.253]

The kinetics of selective CO oxidation over the Cu Cej r02, nanostructured catalysts can be well described by employing Mars and van Krevelen type of kinetic equation derived on the basis of a redox mechanism ... [Pg.219]

This equilibrium has a buffer-like effect stabilizing the presence of cationic copper species in the structure even in a highly reductive atmosphere. The above scheme of copper oxide-ceria interactions indicates clearly that the catalyst is mutually promoted, i.e., both copper and ceria cooperate in the redox mechanism. [Pg.221]

In our studies we have demonstrated that the redox mechanism that was used to model dynamic behavior of CO oxidation is consistent with a kinetic model of the selective CO oxidation obtained under steady-state mode of operation [62], We propose the following tentative scheme (Figure 7.15) for the selective CO oxidation over the CuolCe(J902 v catalyst CO and H2 adsorb on the... [Pg.221]


See other pages where Oxidation redox mechanism is mentioned: [Pg.233]    [Pg.177]    [Pg.744]    [Pg.151]    [Pg.253]    [Pg.215]    [Pg.53]    [Pg.219]    [Pg.296]    [Pg.245]    [Pg.301]    [Pg.125]    [Pg.169]    [Pg.177]    [Pg.178]    [Pg.180]    [Pg.183]    [Pg.188]    [Pg.189]    [Pg.190]    [Pg.191]    [Pg.191]    [Pg.196]    [Pg.209]    [Pg.223]    [Pg.224]    [Pg.233]    [Pg.236]    [Pg.260]    [Pg.209]   
See also in sourсe #XX -- [ Pg.191 ]




SEARCH



Oxidation catalysts redox mechanism

Oxidative redox

Redox mechanism

Redox oxidations

© 2024 chempedia.info