Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation reactions alkynes

Out first example is 2-hydroxy-2-methyl-3-octanone. 3-Octanone can be purchased, but it would be difficult to differentiate the two activated methylene groups in alkylation and oxidation reactions. Usual syntheses of acyloins are based upon addition of terminal alkynes to ketones (disconnection 1 see p. 52). For syntheses of unsymmetrical 1,2-difunctional compounds it is often advisable to look also for reactive starting materials, which do already contain the right substitution pattern. In the present case it turns out that 3-hydroxy-3-methyl-2-butanone is an inexpensive commercial product. This molecule dictates disconnection 3. Another practical synthesis starts with acetone cyanohydrin and pentylmagnesium bromide (disconnection 2). Many 1,2-difunctional compounds are accessible via oxidation of C—C multiple bonds. In this case the target molecule may be obtained by simple permanganate oxidation of 2-methyl-2-octene, which may be synthesized by Wittig reaction (disconnection 1). [Pg.201]

Alkynes undergo stoichiometric oxidative reactions with Pd(II). A useful reaction is oxidative carboiiyiation. Two types of the oxidative carbonyla-tion of alkynes are known. The first is a synthesis of the alkynic carbox-ylates 524 by oxidative carbonylation of terminal alkynes using PdCN and CuCh in the presence of a base[469], Dropwise addition of alkynes is recommended as a preparative-scale procedure of this reation in order to minimize the oxidative dimerization of alkynes as a competitive reaction[470]. Also efficient carbonylation of terminal alkynes using PdCU, CuCI and LiCi under CO-O2 (1 I) was reported[471]. The reaction has been applied to the synthesis of the carbapenem intermediate 525[472], The steroidal acetylenic ester 526 formed by this reaction undergoes the hydroarylalion of the triple bond (see Chapter 4, Section 1) with aryl iodide and formic acid to give the lactone 527(473],... [Pg.97]

Aikynes undergo a variety of reactions using either Pd(H) or Pd(0), and they are treated separately oxidative reactions of alkynes with Pd(Il) are treated in Chapter 3, Section 8. Pd(0)-catalyzed reactions of alkynes with halides in Section 1.1.2 in this chapter, and other reactions in this section. [Pg.471]

Alkyl- and aryl-pyridazines can be prepared by cross-coupling reactions between chloropyridazines and Grignard reagents in the presence of nickel-phosphine complexes as catalysts. Dichloro[l,2-bis(diphenylphosphino)propane]nickel is used for alkylation and dichloro[l,2-bis(diphenylphosphino)ethane]nickel for arylation (78CPB2550). 3-Alkynyl-pyridazines and their A-oxides are prepared from 3-chloropyridazines and their A-oxides and alkynes using a Pd(PPh3)Cl2-Cu complex and triethylamine (78H(9)1397). [Pg.28]

Reaction of benzonitrile A-oxide with alkynic phosphinate (343) gave exclusively 5-phosphinylisoxazole (344), whereas reaction with enamine phosphinate (345) gave the otherwise inaccessible 5-unsubstituted 4-phosphinylisoxazole (346) (80JOC529). [Pg.69]

The molybdenum-catalyzed oxidation of alkynes by /-butyl hydroperoxide has been investigated 73JCS(P1)2851) (the epoxidation of alkenes by this system has become an important reaction Section 5.05.4.2.2(i)) but the formation of oxirenes was excluded. [Pg.124]

Problem 8.6 What alkyne would you start with to prepare each of the following compounds by a hydroboration/oxidation reaction ... [Pg.267]

The hydration of C-C triple bonds represents one of the most atom economical and environmentally friendly oxidation reactions [37], Recently, Nolan and co-workers reported the cationic [Au(lPr)][SbF ] system, which was generated in situ from [AuCl(lPr)] and AgSbF. The catalyst system showed remarkable activity in the hydration of a large range of alkynes, at An loadings as low as 10 ppm (typically 50-100 ppm), under acid-free conditions (Table 10.6) [38],... [Pg.246]

Heteropoly acids can be synergistically combined with phase-transfer catalysis in the so-called Ishii-Venturello chemistry for oxidation reactions such as oxidation of alcohols, allyl alcohols, alkenes, alkynes, P-unsaturated acids, vic-diols, phenol, and amines with hydrogen peroxide (Mizuno et al., 1994). Recent examples include the epoxidations of alkyl undecylenates (Yadav and Satoskar, 1997) and. styrene (Yadav and Pujari, 2000). [Pg.138]

The heterogeneous catalytic system iron phthalocyanine (7) immobilized on silica and tert-butyl hydroperoxide, TBHP, has been proposed for allylic oxidation reactions (10). This catalytic system has shown good activity in the oxidation of 2,3,6-trimethylphenol for the production of 1,4-trimethylbenzoquinone (yield > 80%), a vitamin E precursor (11), and in the oxidation of alkynes and propargylic alcohols to a,p-acetylenic ketones (yields > 60%) (12). A 43% yield of 2-cyclohexen-l-one was obtained (10) over the p-oxo dimeric form of iron tetrasulfophthalocyanine (7a) immobilized on silica using TBHP as oxidant and CH3CN as solvent however, the catalyst deactivated under reaction conditions. [Pg.436]

One obvious synthetic route to isoxazoles and dihydroisoxazoles is by [3+2] cycloadditions of nitrile oxides with alkynes and alkenes, respectively. In the example elaborated by Giacomelli and coworkers shown in Scheme 6.206, nitroalkanes were converted in situ to nitrile oxides with 1.25 equivalents of the reagent 4-(4,6-di-methoxy[l,3,5]triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) and 10 mol% of N,N-dimethylaminopyridine (DMAP) as catalyst [373], In the presence of an alkene or alkyne dipolarophile (5.0 equivalents), the generated nitrile oxide 1,3-dipoles undergo cycloaddition with the double or triple bond, respectively, thereby furnishing 4,5-dihydroisoxazoles or isoxazoles. For these reactions, open-vessel microwave conditions were chosen and full conversion with very high isolated yields of products was achieved within 3 min at 80 °C. The reactions could also be carried out utilizing a resin-bound alkyne [373]. For a related example, see [477]. [Pg.238]

The evidence supporting the suggestion that cyclic manganate(V) diesters are intermediates in the reaction between alkenes and permanganate is compelling (47), and Simandi (48) has also suggested that a similar intermediate, 2, may occur during the oxidation of alkynes as in equation 4. [Pg.87]

By far the most commonly used - though not the most environmentally friendly -solvent is CCl (or more usually water-CCl ). In a classic paper Sharpless et al. showed that oxidation reactions of RuO (and other some Ru-based oxidants) were accelerated by addition of a little acetonitrile to the conventional water-CCl biphasic mixture. It was suggested that the CH3CN might function as a mild donor stabilising a lower oxidation state carboxylato Ru species which could be involved in the catalytic process [260]. A comparative study of CCl, acetone, ethyl acetate, cyclohexane and acetone for cleavage of alkenes and alkynes by RuClg/aq. IO(OH)3/solvent showed that cyclohexane was the most effective [216]. Other solvents sometimes... [Pg.13]

The same catalytic system (SeOi/TBHP) has also been used by Chabaud and Sharpless in the allylic oxidation of alkynes. The oxidation products resulting from the Se02-catalyzed allylic oxidation with TBHP are the allylic alcohol, the allylic diol, the allylic ketone, the ketol and the enynone (Scheme 127). The main product of the reaction is either the alcohol or the diol, depending on the substrate employed (together 76-100% of the whole yield). The yields of allylic oxidation products together range from 15 to 88%. From the observed results with unsymmetrical alkynes it could be concluded that the reactivity sequence for the carbon attached to the triple bond of alkynes is CH2 CH > CH3. [Pg.513]

Hydroboration-oxidation of alkynes preparation of aldehydes and ketones Hydroboration-oxidation of terminal alkynes gives syn addition of water across the triple bond. The reaction is regioselective and follows anti-Markovnikov addition. Terminal alkynes are converted to aldehydes, and all other alkynes are converted to ketones. A sterically hindered dialkylborane must be used to prevent the addition of two borane molecules. A vinyl borane is produced with anU-Markovnikov orientation, which is oxidized by basic hydrogen peroxide to an enol. This enol tautomerizes readily to the more stable keto form. [Pg.208]


See other pages where Oxidation reactions alkynes is mentioned: [Pg.122]    [Pg.122]    [Pg.123]    [Pg.47]    [Pg.237]    [Pg.128]    [Pg.639]    [Pg.238]    [Pg.212]    [Pg.20]    [Pg.462]    [Pg.788]    [Pg.146]    [Pg.99]    [Pg.103]    [Pg.191]    [Pg.219]    [Pg.928]    [Pg.122]    [Pg.122]    [Pg.123]    [Pg.122]    [Pg.122]    [Pg.123]    [Pg.464]   
See also in sourсe #XX -- [ Pg.34 , Pg.115 ]




SEARCH



Alkynes oxidation

Alkynes oxidative reactions

Alkynes oxidative reactions

Alkynes reaction with nitrile oxides

Oxidation Reaction Mechanism of Alkynes by OH

Oxidation reactions alkyne derivatives

Oxidative homocoupling reactions terminal alkynes

© 2024 chempedia.info