Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation reaction, structure-sensitive

Very recently, considerable effort has been devoted to the simulation of the oscillatory behavior which has been observed experimentally in various surface reactions. So far, the most studied reaction is the catalytic oxidation of carbon monoxide, where it is well known that oscillations are coupled to reversible reconstructions of the surface via structure-sensitive sticking coefficients of the reactants. A careful evaluation of the simulation results is necessary in order to ensure that oscillations remain in the thermodynamic limit. The roles of surface diffusion of the reactants versus direct adsorption from the gas phase, at the onset of selforganization and synchronized behavior, is a topic which merits further investigation. [Pg.430]

The fluorescent compound F, a luciferin, emits blue light (Amax 476 nm Fig. 3.2.4) in the presence of molecular oxygen and the protein P, a luciferase. In the luminescence reaction, F is changed into an oxidized form (structure 8, Fig. 3.2.6). The luminescence reaction is highly sensitive to pH, with a narrow optimal range around pH 7.8 (Fig. 3.2.2) the optimum salt concentration is 0.15 M for NaCl... [Pg.80]

The purpose of this work was to increase the A3 selectivity at low conversion through a catalyst modification. Previous studies of phenol alkylation with methanol (the analogue reaction) over oxides and zeolites showed that the reaction is sensitive to acidic and basic properties of the catalysts [3-5]. It is the aim of this study to understand the dependence of catalyst structure and acidity on activity and selectivity in gas phase methylation of catechol. Different cations such as Li, K, Mg, Ca, B, incorporated into y-Al203 can markedly modify the polarisation of the lattice and consequently influence the acidic and basic properties of the surface [5-8] which control the mechanism of this reaction. [Pg.172]

As was demonstrated in the preceding sections, structure-sensitivity phenomena are mostly confined to particle size regimes smaller than 3-4 nm. A process of industrial relevance was investigated by de Jong et al. [127] in their study on cobalt particle size effects in the Fischer-Tropsch reaction. Earlier works noted distinct drop in activity for Co particles smaller than lOnm and ascribed this phenomenon to either a partial oxide or carbide formation which should be enhanced for particles in this size regime [128-139]. In order to avoid similar effects, de Jong used... [Pg.175]

By using thermosensitive poly-acrylamides, it is possible to prepare cubic Pt nanocrystals (with predominant (1 0 0) facets) and tetrahedral Pt nanocrystals (rich in (111) facets). These Pt nanocrystals can be supported on oxide (alumina) and used as a catalyst in structure-sensitive reaction, NO reduction by CH4. The results proved that morphologically controlled metal nanoparticles supported on adequate support give us a novel tool to connect the worlds of surface science with that of real catalysis. [Pg.305]

CO oxidation is a highly structure-sensitive reaction that needs steps and defect sites. MobUity of CO on the electrode surface does not seem to play a role on... [Pg.197]

There have been even fewer studies of CO electro-oxidation on supported Au particles than on supported Pt. One may expect, however, on the basis of the studies on extended Au surfaces, that there will be a structure sensitivity to the CO electrooxidation reaction on supported Au particles. [Pg.572]

Numerous quantum mechanic calculations have been carried out to better understand the bonding of nitrogen oxide on transition metal surfaces. For instance, the group of Sautet et al have reported a comparative density-functional theory (DFT) study of the chemisorption and dissociation of NO molecules on the close-packed (111), the more open (100), and the stepped (511) surfaces of palladium and rhodium to estimate both energetics and kinetics of the reaction pathways [75], The structure sensitivity of the adsorption was found to correlate well with catalytic activity, as estimated from the calculated dissociation rate constants at 300 K. The latter were found to agree with numerous experimental observations, with (111) facets rather inactive towards NO dissociation and stepped surfaces far more active, and to follow the sequence Rh(100) > terraces in Rh(511) > steps in Rh(511) > steps in Pd(511) > Rh(lll) > Pd(100) > terraces in Pd (511) > Pd (111). The effect of the steps on activity was found to be clearly favorable on the Pd(511) surface but unfavorable on the Rh(511) surface, perhaps explaining the difference in activity between the two metals. The influence of... [Pg.85]

A pronounced structural sensitivity of the oxidation of Pt surfaces is also seen in Fig. 1. The reaction takes place at the most positive potential on Pt(lll). This is probably due to effective blocking of the surface by oxy-anions with the trigonal symmetry, compatible with the (111) orientation. A detailed analysis of this reaction on Au(lll) has been recently performed by Angerstein-Kozlowska et al. (14). No such blocking is possible for the Pt(100) and Pt(110) surfaces with four-fold and two-fold symmetries. Consequently, the oxidation commences at more negative potentials, probably predominantly determined by the surface energy as found with Au (16). [Pg.501]

Both the data on hydrogen adsorption and formic acid oxidation show pronounced structural sensitivity, thus confirming a paramount role of surface structure in electrocatalytic reactions. It can be concluded that each crystallographic orientation represents a distinct electrochemical (chemical) entity. The investigation of stepped surfaces seems to be necessary to reach an understanding of these systems on a molecular level. Hydrogen adsorption shows dependences on the terrace orientation, step orientation, and step density. All the... [Pg.513]


See other pages where Oxidation reaction, structure-sensitive is mentioned: [Pg.343]    [Pg.183]    [Pg.430]    [Pg.63]    [Pg.560]    [Pg.327]    [Pg.953]    [Pg.37]    [Pg.488]    [Pg.274]    [Pg.298]    [Pg.342]    [Pg.165]    [Pg.169]    [Pg.171]    [Pg.174]    [Pg.175]    [Pg.178]    [Pg.301]    [Pg.310]    [Pg.466]    [Pg.198]    [Pg.567]    [Pg.572]    [Pg.701]    [Pg.31]    [Pg.410]    [Pg.527]    [Pg.512]    [Pg.509]    [Pg.511]    [Pg.183]    [Pg.331]    [Pg.26]    [Pg.238]    [Pg.184]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Other Structure-Sensitive Oxidation Reactions

Oxidation, sensitized

Oxides, structure

Reactions sensitivities

Sensitization reactions

Sensitizers reactions

Structure sensitive reactions

Structure sensitivity

Structure-sensitive sensitivity

© 2024 chempedia.info