Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation inhibition mechanism, electron

The unique properties and actions of an inhibitory substance can often help to identify aspects of an enzyme mechanism. Many details of electron transport and oxidative phosphorylation mechanisms have been gained from studying the effects of particular inhibitors. Figure 21.29 presents the structures of some electron transport and oxidative phosphorylation inhibitors. The sites of inhibition by these agents are indicated in Figure 21.30. [Pg.698]

An inhibition mechanism involving electron transfer between a chain-propagating radical and the antioxidant has frequently been suggested but has rarely been identified with any certainty. This process remains one of the least understood of all inhibition mechanisms. Probably the most clear-cut example of inhibition by one electron transfer (either partial or complete) has come from studies of metal-catalyzed oxidations. Many workers have reported that under certain conditions transition metals may inhibit rather than catalyze oxidations. Cobalt, manganese, and copper are particularly prominent in this respect. [Pg.310]

Depletion of ATP is caused by many toxic compounds, and this will result in a variety of biochemical changes. Although there are many ways for toxic compounds to cause a depletion of ATP in the cell, interference with mitochondrial oxidative phosphorylation is perhaps the most common. Thus, compounds, such as 2,4-dinitrophenol, which uncouple the production of ATP from the electron transport chain, will cause such an effect, but will also cause inhibition of electron transport or depletion of NADH. Excessive use of ATP or sequestration are other mechanisms, the latter being more fully described in relation to ethionine toxicity in chapter 7. Also, DNA damage, which causes the activation of poly(ADP-ribose) polymerase (PARP), may lead to ATP depletion (see below). A lack of ATP in the cell means that active transport into, out of, and within the cell is compromised or halted, with the result that the concentration of ions such as Na+, K+, and Ca2+ in particular compartments will change. Also, various synthetic biochemical processes such as protein synthesis, gluconeogenesis, and lipid synthesis will tend to be decreased. At the tissue level, this may mean that hepatocytes do not produce bile efficiently and proximal tubules do not actively reabsorb essential amino acids and glucose. [Pg.219]

The oxidation of carbon fibers can be inhibited to some extent by the use of dopants such as boron. Three mechanisms could be involved in the inhibition process active site blockage resulting from the formation of a boron oxide layer, chemical inhibition by electron transfer, and development of fiber structure/microtexture which is catalyzed by boron. For example, at 700°C, the oxidation rate of the T300 fiber decreases 30 fold when 2000 ppm B are added and the P55 fibers having 5% B never reach 25% burn-off [67]. [Pg.261]

Nonspecific Inhibition - The use of log P in the correlation of the structure-activity relationship in a wide variety of narcotics has shown a linear relation between log 1/C and log P for 16 different systems with slopes near 1. The similar equations point to a common mechanism of action, possibly the inhibition of electron transport in oxidative metabolism. The use of log P for relating the effect of different sets of congeners acting on different biological systems Is Indicated in eq 9 and 10. [Pg.350]

Copper Corrosion Inhibitors. The most effective corrosion inhibitors for copper and its alloys are the aromatic triazoles, such as benzotriazole (BZT) and tolyltriazole (TTA). These compounds bond direcdy with cuprous oxide (CU2O) at the metal surface, forming a "chemisorbed" film. The plane of the triazole Hes parallel to the metal surface, thus each molecule covers a relatively large surface area. The exact mechanism of inhibition is unknown. Various studies indicate anodic inhibition, cathodic inhibition, or a combination of the two. Other studies indicate the formation of an insulating layer between the water surface and the metal surface. A recent study supports the idea of an electronic stabilization mechanism. The protective cuprous oxide layer is prevented from oxidizing to the nonprotective cupric oxide. This is an anodic mechanism. However, the triazole film exhibits some cathodic properties as well. [Pg.270]

Several mechanisms for the polymerization of vinyl ether and epoxies have been suggested [20,22,23,25,27,28,33-35]. On irradiation with gamma rays or electrons, pure epoxies polymerize via a cationic mechanism [35]. However, this cationic polymerization is inhibited by just traces of moisture, as shown below for cyclohexene oxide in reaction 5. [Pg.1022]

Although only two protons are pumped out of the matrix, two others from the matrix are consumed in the formation of H2O. There is therefore a net translocation of four positive charges out of the matrix which is equivalent to the extrusion of four protons. If four protons are required by the chemiosmotic mechanism to convert cytosolic ADP + Pj to ATP, then 0.5 mol ATP is made for the oxidation of one mol of ubiquinol and one mol ATP for the oxidation of 2 mols of reduced cytochrome c. These stoichiometries were obtained experimentally when ubiquinol was oxidized when complexes I, II, and IV were inhibited by rotenone, malonate, and cyanide, respectively, and when reduced cytochrome c was oxidized with complex III inhibited by antimycin (Hinkle et al., 1991). (In these experiments, of course, no protons were liberated in the matrix by substrate oxidation.) However, in the scheme illustrated in Figure 6, with the flow of two electrons through the complete electron transport chain from substrate to oxygen, it also appears valid to say that four protons are extmded by complex I, four by complex III, and two by complex 1. [Pg.151]

Dinitrophenol is a member of the aromatic family of pesticides, many of which exhibit insecticide and fungicide activity. DNP is considered to be highly toxic to humans, with a lethal oral dose of 14 to 43mg/kg. Environmental exposure to DNP occurs primarily from pesticide runoff to water. DNP is used as a pesticide, wood preservative, and in the manufacture of dyes. DNP is an uncoupler, or has the ability to separate the flow of electrons and the pumping of ions for ATP synthesis. This means that the energy from electron transfer cannot be used for ATP synthesis [75,77]. The mechanism of action of DNP is believed to inhibit the formation of ATP by uncoupling oxidative phosphorylation. [Pg.662]

Allelopathic inhibition of mineral uptake results from alteration of cellular membrane functions in plant roots. Evidence that allelochemicals alter mineral absorption comes from studies showing changes in mineral concentration in plants that were grown in association with other plants, with debris from other plants, with leachates from other plants, or with specific allelochemicals. More conclusive experiments have shown that specific allelochemicals (phenolic acids and flavonoids) inhibit mineral absorption by excised plant roots. The physiological mechanism of action of these allelochemicals involves the disruption of normal membrane functions in plant cells. These allelochemicals can depolarize the electrical potential difference across membranes, a primary driving force for active absorption of mineral ions. Allelochemicals can also decrease the ATP content of cells by inhibiting electron transport and oxidative phosphorylation, which are two functions of mitochondrial membranes. In addition, allelochemicals can alter the permeability of membranes to mineral ions. Thus, lipophilic allelochemicals can alter mineral absorption by several mechanisms as the chemicals partition into or move through cellular membranes. Which mechanism predominates may depend upon the particular allelochemical, its concentration, and environmental conditions (especially pH). [Pg.161]


See other pages where Oxidation inhibition mechanism, electron is mentioned: [Pg.266]    [Pg.265]    [Pg.113]    [Pg.111]    [Pg.111]    [Pg.314]    [Pg.496]    [Pg.195]    [Pg.1363]    [Pg.3078]    [Pg.95]    [Pg.130]    [Pg.440]    [Pg.420]    [Pg.147]    [Pg.103]    [Pg.228]    [Pg.813]    [Pg.821]    [Pg.825]    [Pg.416]    [Pg.147]    [Pg.280]    [Pg.321]    [Pg.110]    [Pg.280]    [Pg.282]    [Pg.28]    [Pg.115]    [Pg.155]    [Pg.9]    [Pg.774]    [Pg.85]    [Pg.91]    [Pg.284]    [Pg.370]    [Pg.265]    [Pg.907]    [Pg.13]   


SEARCH



Electron Oxidants

Electron mechanisms

Electron transfer oxidation inhibition mechanism

Electronic oxides

Electrons oxidation

Inhibited oxidation

Inhibition mechanism

Oxidative inhibition

© 2024 chempedia.info