Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation enzyme-mediated asymmetric

The biomimetic approach to total synthesis draws inspiration from the enzyme-catalyzed conversion of squalene oxide (2) to lanosterol (3) (through polyolefinic cyclization and subsequent rearrangement), a biosynthetic precursor of cholesterol, and the related conversion of squalene oxide (2) to the plant triterpenoid dammaradienol (4) (see Scheme la).3 The dramatic productivity of these enzyme-mediated transformations is obvious in one impressive step, squalene oxide (2), a molecule harboring only a single asymmetric carbon atom, is converted into a stereochemically complex polycyclic framework in a manner that is stereospecific. In both cases, four carbocyclic rings are created at the expense of a single oxirane ring. [Pg.83]

The oxidation of heteroatoms and, in particular, the conversion of sulfides to asymmetric sulfoxides has continued to be a highly active field in biocatalysis. In particular, the diverse biotransformations at sulfur have received the majority of attention in the area of enzyme-mediated heteroatom oxidation. This is particularly due to the versatile applicability of sulfoxides as chiral auxiliaries in a variety of transformations coupled with facile protocols for the ultimate removal [187]. [Pg.253]

A successful case study for asymmetric nitrogen oxidation was reported for a series of (hetero)aromatic tertiary amines. High diastereoselectivity was observed for the enzyme-mediated oxidation of S-(—)-nicotine by isolated CHMOAdneto to give the corresponding ds-N-oxide [215]. The stereoselectivity of this biooxidation was complementary to the product obtained by flavin M O (FM O) from human li ver (trows-selective [216]) as well as unspecific oxidations by FMOs from porcine and guinea pig liver. [Pg.256]

Colonna S, Del Sordo S, Gaggero N, Carrea G, Pasta P (2002) Enzyme-Mediated Catalytic Asymmetric Oxidations. Heteroatom Chem 13 467... [Pg.483]

Colonna, S., Del Sordo, S., Gaggero, N., Carrea, G. and Pasta, P. (2002) Enzyme-mediated catalytic asymmetric oxidations. Heteroatom Chemistry, 13, 467 73. [Pg.333]

For the asymmetric reduction of ketone and aldehyde derivates, two electrochemical reduction systems using ADH as catalyst were examined (Fig. 22) [108]. In system A, the reduced coenzymes are regenerated using either FNR for NADPH or DP for NADH. Methyl viologen serves as electron mediator between the electrode and FNR/DP. System B contains ADH as sole enzyme, which catalyzes both reduction of substrates and regeneration of cofactors. Phenylethanol is oxidized by ADH accompanied by reduction of NADP+ to NADPH and its oxidation product acetophenone is reduced electrochemically at a glassy carbon cathode. [Pg.216]

Apart from the asymmetric metal catalysis, enantioselective Baeyer-Villiger oxidations mediated by enzymes have been known for some time [32,33,34]. Both whole-cell cultures and isolated enzymes, usually flavin-dependent monooxygenases, can be used to oxidize ketones enantioselectively. For future improvements in the asymmetric Baeyer-VilHger oxidation the use of chiral Lewis acids in combination with an appropriate oxidant seems worthy of intensive investigation. [Pg.768]

Epoxides are key chiral synthetic intermediates and their enantioselective preparation by oxidation of achiral alkenes is a key reaction in many synthetic strategies. Sharpless asymmetric epoxidation is suitable for most allylic alcohols [26, 27], but few general procedures exist for unfunctionalized olefins. Jacobsen s manganese salen-mediated epoxidation is suitable for and gives good selectivities with Z-olefins (85 to 90% ee) [28]. The enzyme chloroperoxidase... [Pg.1319]

A comprehensive review (260 refs.) on the synthesis of carbohydrates from noncarbohydrate sources covers the use of benzene-derived diols and products of Sharpless asymmetric oxidation as starting materials, Dodoni s thiazole and Vogel s naked sugar approaches, as well as the application of enzyme-catalysed aldol condensations. The preparation of monosaccharides by enzyme-catalysed aldol condensations is also discussed in a review on recent advances in the chemoenzymic synthesis of carbohydrates and carbohydrate mimetics, in parts of reviews on the formation of carbon-carbon bonds by enzymic asymmetric synthesis and on carbohydrate-mediated biochemical recognition processes as potential targets for drug development, as well as in connection with the introduction of three Aldol Reaction Kits that provide dihydroxyacetone phosphate-dependent aldolases (27 refs.). A further review deals with the synthesis of carbohydrates by application of the nitrile oxide 1,3-dipolar cycloaddition (13 refs.). ... [Pg.2]


See other pages where Oxidation enzyme-mediated asymmetric is mentioned: [Pg.265]    [Pg.211]    [Pg.362]    [Pg.139]    [Pg.345]    [Pg.73]    [Pg.187]    [Pg.220]    [Pg.408]    [Pg.359]    [Pg.593]    [Pg.304]    [Pg.300]    [Pg.94]    [Pg.350]    [Pg.294]    [Pg.419]    [Pg.182]    [Pg.13]    [Pg.1092]    [Pg.580]   
See also in sourсe #XX -- [ Pg.806 ]

See also in sourсe #XX -- [ Pg.806 ]




SEARCH



Asymmetric -mediated

Asymmetric oxidation

Enzyme oxidation

Enzyme-mediated

Enzyme-mediated asymmetric

Enzymes oxidizing

Mediated oxidation

Oxidation enzyme-mediated

Oxidation mediators

Oxidative enzymes

Oxidative mediators

© 2024 chempedia.info