Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation environmentally benign oxidant

There is a curious irony in the nomination of hypochlorite as an environmentally benign oxidizing agent It comes at a time of increasing pressure to eliminate chlorine and chlorine containing com pounds from the environment to as great a degree as possible Any all inclusive assault on chlorine needs to... [Pg.645]

In conclusion, the above summary of oxidation methods shows that there is still room for further improvements in the field of selective olefin epoxidation. The development of active and selective catalysts capable of oxidizing a broad range of olefin substrates with aqueous hydrogen peroxide as terminal oxidant in inexpensive and environmentally benign solvents remains a continuing challenge. [Pg.225]

We have reported a simple, green, bench top, economical and environmentally benign room temperature synthesis of MSe (M=Cd or Zn) nanoparticles using starch, PVA and PVP as passivating agents. The whole process is a redox reaction with selenium acting as the oxidant and MSe as the reduction product. An entire "green" chemistry was explored in this synthetic procedure and it is reproducible. The optical spectroscopy showed that all the particles are blue shifted from the bulk band gap clearly due to quantum confinement. Starch capped CdSe nanoparticles showed the presence of monodispersed spherical... [Pg.179]

Surfactants and Colloids in Supercritical Fluids Because very few nonvolatile molecules are soluble in CO2, many types of hydrophilic or lipophilic species may be dispersed in the form of polymer latexes (e.g., polystyrene), microemulsions, macroemulsions, and inorganic suspensions of metals and metal oxides (Shah et al., op. cit.). The environmentally benign, nontoxic, and nonflammable fluids water and CO2 are the two most abundant and inexpensive solvents on earth. Fluorocarbon and hydrocarbon-based surfactants have been used to form reverse micelles, water-in-C02... [Pg.15]

Interestingly, the Fischer indole synthesis does not easily proceed from acetaldehyde to afford indole. Usually, indole-2-carboxylic acid is prepared from phenylhydrazine with a pyruvate ester followed by hydrolysis. Traditional methods for decarboxylation of indole-2-carboxylic acid to form indole are not environmentally benign. They include pyrolysis or heating with copper-bronze powder, copper(I) chloride, copper chromite, copper acetate or copper(II) oxide, in for example, heat-transfer oils, glycerol, quinoline or 2-benzylpyridine. Decomposition of the product during lengthy thermolysis or purification affects the yields. [Pg.52]

The enormous interest in these materials is, however, due to their remarkable catalytic activities in oxidation reactions using the environmentally benign aqueous H202 as the oxidant. [Pg.78]

The first use of supercritical fluid extraction (SFE) as an extraction technique was reported by Zosel [379]. Since then there have been many reports on the use of SFE to extract PCBs, phenols, PAHs, and other organic compounds from particulate matter, soils and sediments [362, 363, 380-389]. The attraction of SFE as an extraction technique is directly related to the unique properties of the supercritical fluid [390]. Supercritical fluids, which have been used, have low viscosities, high diffusion coefficients, and low flammabilities, which are all clearly superior to the organic solvents normally used. Carbon dioxide (C02, [362,363]) is the most common supercritical fluid used for SFE, since it is inexpensive and has a low critical temperature (31.3 °C) and pressure (72.2 bar). Other less commonly used fluids include nitrous oxide (N20), ammonia, fluoro-form, methane, pentane, methanol, ethanol, sulfur hexafluoride (SF6), and dichlorofluoromethane [362, 363, 391]. Most of these fluids are clearly less attractive as solvents in terms of toxicity or as environmentally benign chemicals. Commercial SFE systems are available, but some workers have also made inexpensive modular systems [390]. [Pg.56]

Aside from the multifaceted chemical conversions, there are sources to develop into industrially viable microbial conversions. 1,2,4-Butanetriol, for example, used as an intermediate chemical for alkyd resins and rocket fuels, is currently prepared commercially from malic acid by high-pressure hydrogenation or hydride reduction of its methyl ester. In a novel environmentally benign approach to this chemical, wood-derived D-xylose is microbially oxidized to D-xylonic acid, followed by a multistep conversion to the product effected by a biocatalyst specially engineered by inserting Pseudomonas putida plasmids into E. coli ... [Pg.47]

More recently, an environmentally benign method using air as oxidant has been developed for the oxidative cyclization of arylamine-substituted tricarbonyl-iron-cyclohexadiene complexes to carbazoles (Scheme 19). Reaction of methyl 4-aminosalicylate 45 with the complex salt 6a affords the iron complex 46, which on oxidation in acidic medium by air provides the tricarbonyliron-complexed 4a,9a-dihydrocarbazole 47. Aromatization with concomitant demetalation by treatment of the crude product with p-chloranil leads to mukonidine 48 [88]. The spectral data of this compound are in agreement with those reported by Wu[22j. [Pg.130]

Ethanol is produced as a more environmentally benign fuel. The systematic effect of ethyl alcohol differs from that of methyl alcohol. Ethyl alcohol is rapidly oxidized in the body to carbon dioxide and water, and in contrast to methyl alcohol no cumulative effect occurs. Ethanol is also a preferred alcohol in the transportation sector compared to methanol because it is derived from agricultural products and is renewable and biologically less objectionable in the enviromnent. [Pg.96]

The environmentally benign synthesis of lactones has attracted attention because of their importance in natural product chemistry. The oxidative cyclization of diols via carbon-oxygen bond formation is the most well-known approach for the synthesis of lactones [70]. [Pg.135]

T. Matsumoto, M. Ueno, N. Wang, S. Kobayashi, Recent Advances in Immobilized Metal Catalysts for Environmentally Benign Oxidation of Alcohols, Chem. Asian J. 3 (2008) 196-214. [Pg.366]

In this review we will focus on their use as catalysts and promoters in the introduction of molecular oxygen into organic substrates. Oxidized hydrocarbons serve as important feedstocks for the chemical and pharmaceutical industries. Unfortunately, hydrocarbons are also infamous in their ability to resist oxidation under environmentally benign and easily controlled conditions. The large volume of these materials needed to satisfy the demand of the chemical industry economically precludes all stoichiometric oxidants, with the sole exception of molecular... [Pg.275]


See other pages where Oxidation environmentally benign oxidant is mentioned: [Pg.644]    [Pg.644]    [Pg.185]    [Pg.186]    [Pg.218]    [Pg.224]    [Pg.103]    [Pg.164]    [Pg.168]    [Pg.122]    [Pg.276]    [Pg.3]    [Pg.329]    [Pg.101]    [Pg.233]    [Pg.186]    [Pg.1068]    [Pg.51]    [Pg.120]    [Pg.386]    [Pg.217]    [Pg.222]    [Pg.120]    [Pg.112]    [Pg.49]    [Pg.182]    [Pg.26]    [Pg.127]    [Pg.260]    [Pg.303]    [Pg.217]    [Pg.332]    [Pg.369]    [Pg.96]    [Pg.245]    [Pg.44]    [Pg.268]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Alcohol environmentally benign oxidant

Benign

Environmental benign

Environmentally benign

Modern Oxidation of Alcohols using Environmentally Benign Oxidants

© 2024 chempedia.info