Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation chromium-catalyzed

Only a distillative work-up from an acidic oxidation reaction, for example, delivers 55, which then has to be isomerized by base to obtain 56 [113]. Similar precautions for the synthesis of 55 have been reported recently for a chromium-catalyzed oxidation [114] here again the key is to avoid a base and even a chromatographic workup, as already demonstrated for chromium-free Dess-Martin oxidations [110]. [Pg.1165]

In the nickel(ll)-catalyzed NHK reaction, the first step is the reduction of Ni " to Ni that inserts into the halogen-carbon bond via an oxidative addition. The organonickel species transmetallates with Cr " to form the organochromium(lll) nucleophile, which then reacts with the carbonyl compound. To make the process environmentally benign, a chromium-catalyzed version was developed where a chlorosilane was used as an additive to silylate the chromium alkoxide species in order to release the metal salt from the product. The released Cr " is reduced to Cr " with manganese powder. [Pg.318]

The oxidation of hydrocarbons and alcohols with TBHP is presumed to involve oxidation of the substrate by oxochromium(VI) followed by reoxidation of Cr by TBHP, i.e. an oxometal pathway. When O, is the oxidant the substrate undergoes initial chromium-catalyzed autoxidation to the corresponding hydroperoxide. The latter undergoes catalytic decomposition and/or functions as the oxidant. The observation that the bulky triphenylmethyl hydroperoxide, which cannot be accommodated in the micropores, gave no reaction was construed as evidence for the reactions taking place in the micropores. This subsequently proved to be a misinterpretation of the results (see later). [Pg.167]

Soluble chromium compounds are known to catalyze the allylic oxidation of olefins [22,23] and benzylic oxidations of alkyl aromatics [22,24] using tert-butyl-hydroperoxide as the primary oxidant. Chromium-substituted aluminophosphates, e. g. CrAPO-5, were shown to catalyze the allylic oxidation of a variety of terpene substrates with TBHP to give the corresponding enones [25,26]. For example, a-pinene afforded verbenone with 77% selectivity (Eq. 6) and 13% of the corresponding alcohol. [Pg.523]

Oxidations. A chromium-catalyzed oxidation of alcohols with sodium percarbonate is accomplished in benzotrifluoride. PhCF, is a useful replacement for 1,2-dichloroethane as solvent. [Pg.405]

A study of the catalytic properties of the oxides of vanadium and chromium, widely used as dehydrogenation catalysts, has shown that these oxides will catalyze the reaction of hydrogenation. [Pg.707]

Periodic acid can be applied as the stoichiometric oxidant in several transition metal catalyzed oxidations. Particularly useful are the chromium-catalyzed oxidations. In the presence of catalytic chromoyl diacetate, tertiary C—H bonds are oxidized to produce tertiary alcohols in moderate yields with retention of the original C—H stereochemistry, as exemplified in Scheme 3.369 [1320]. [Pg.304]

For reviews of chromium catalyzed oxidations in organic synthesis see... [Pg.403]

Chromium(VI) catalyzes the oxidation of alcohols with alkyl hydroperoxides . Chromium-incorporated molecular sieves, in particular chromium-substituted aluminophosphate-5 (Cr-APO-5) were shown to be effective for the aerobic oxidation of secondary alcohols to the corresponding ketones (Reaction 19). This, and related catalysts, were first believed to be heterogeneous but more detailed investigations revealed that the observed catalysis is due to small amounts of soluble chromium that are leached from the framework by reaction with hydroperoxides. Reaction 19 may involve initial chromium-catalyzed free radical autoxidation of the alcohol to the a-hydroxyalkyl hydroperoxide followed by chromium-catalyzed oxygen transfer with the latter and/or H202 (formed by its dissociation) via an oxochromium(VI)-chromium(IV) cycle. [Pg.146]

We shall describe a specific synthetic example for each protective group given above. Regiosdective proteaion is generally only possible if there are hydroxyl groups of different sterical hindrance (prim < sec < tert equatorial < axial). Acetylation has usually been effected with acetic anhydride. The acetylation of less reactive hydroxyl groups is catalyzed by DMAP (see p.l44f.). Acetates are stable toward oxidation with chromium trioxide in pyridine and have been used, for example, for protection of steroids (H.J.E. Loewenthal, 1959), carbohydrates (M.L. Wolfrom, 1963 J.M. Williams, 1967), and nucleosides (A.M. Micbelson, 1963). The most common deacetylation procedures are ammonolysis with NH in CH OH and methanolysis with KjCO, or sodium methoxide. [Pg.158]

Reforming is completed in a secondary reformer, where air is added both to elevate the temperature by partial combustion of the gas stream and to produce the 3 1 H2 N2 ratio downstream of the shift converter as is required for ammonia synthesis. The water gas shift converter then produces more H2 from carbon monoxide and water. A low temperature shift process using a zinc—chromium—copper oxide catalyst has replaced the earlier iron oxide-catalyzed high temperature system. The majority of the CO2 is then removed. [Pg.83]

HTS catalyst consists mainly of magnetite crystals stabilized using chromium oxide. Phosphoms, arsenic, and sulfur are poisons to the catalyst. Low reformer steam to carbon ratios give rise to conditions favoring the formation of iron carbides which catalyze the synthesis of hydrocarbons by the Fisher-Tropsch reaction. Modified iron and iron-free HTS catalysts have been developed to avoid these problems (49,50) and allow operation at steam to carbon ratios as low as 2.7. Kinetic and equiUbrium data for the water gas shift reaction are available in reference 51. [Pg.348]

Copper—cadmium and zinc—chromium oxides seem to provide most selectivity (38—42). Copper chromite catalysts are not selective. Reduction of red oil-grade oleic acid has been accompHshed in 60—70% yield and with high selectivity with Cr—Zn—Cd, Cr—Zn—Cd—Al, or Zn—Cd—A1 oxides (43). The reduction may be a homogeneously catalyzed reaction as the result of the formation of copper or cadmium soaps (44). [Pg.85]

Metal oxides, sulfides, and hydrides form a transition between acid/base and metal catalysts. They catalyze hydrogenation/dehydro-genation as well as many of the reactions catalyzed by acids, such as cracking and isomerization. Their oxidation activity is related to the possibility of two valence states which allow oxygen to be released and reabsorbed alternately. Common examples are oxides of cobalt, iron, zinc, and chromium and hydrides of precious metals that can release hydrogen readily. Sulfide catalysts are more resistant than metals to the formation of coke deposits and to poisoning by sulfur compounds their main application is in hydrodesulfurization. [Pg.2094]

Cholestane-3/3,5a-diol 3-acetate, 397 Cholestane-4a,5a-diol 4-tosylate, 398 Cholestane-5a,6a-diol 6-tosylate,394 5a-Cholestan-2-one, 57, 88, 427 10(5 4 H)ijAeo-Cholestan-5-one, 398 10(5 6)ij ieo-Cholestan-5-one, 392, 394 5a-Cholestan-3-one cyanohydrin, 359 5a-Cholestan-3-one cyanohydrin acetate, 360 5a-Cholestan-2a,3a-oxide, 42 5a-Cholestan-2/3,3/3-thiirane, 43 Cholest-5-ene-3, 19-diol, 268 Cholest-5-ene-3, 25-diol, 71 5(10->l/3H)flfc eo-cholest- 10(19)-ene-3/8,5a-diol 3-acetate, 397, 398 Cholest-4-ene-3,6-dione, 105 Cholest-4-en-3-one, 318 Chromium trioxide, 147, 150 5a-Conanine-3/3-ol-ll-one 3-acetate, 259 Cupric bromide, 210, 211 Cuprous chloride-catalyzed conjugate addition, 76, 80... [Pg.457]

A silver-gauze catalyst is still used in some older processes that operate at a relatively higher temperature (about 500°C). New processes use an iron-molyhdenum oxide catalyst. Chromium or cohalt oxides are sometimes used to dope the catalyst. The oxidation reaction is exothermic and occurs at approximately 400-425 °C and atmospheric pressure. Excess air is used to keep the methanol air ratio helow the explosion limits. Figure 5-6 shows the Haldor Topsoe iron-molyhdenum oxide catalyzed process. [Pg.153]

There are many ways to produce acetaldehyde. Historically, it was produced either hy the silver-catalyzed oxidation or hy the chromium activated copper-catalyzed dehydrogenation of ethanol. Currently, acetaldehyde is obtained from ethylene hy using a homogeneous catalyst (Wacker catalyst). The catalyst allows the reaction to occur at much lower temperatures (typically 130°) than those used for the oxidation or the dehydrogenation of ethanol (approximately 500°C for the oxidation and 250°C for the dehydrogenation). [Pg.198]

CHROMIUM TRIOXIDE-PYRIDINE COMPLEX, preparation in situ, 55, 84 Chrysene, 58,15, 16 fzans-Cinnamaldehyde, 57, 85 Cinnamaldehyde dimethylacetal, 57, 84 Cinnamyl alcohol, 56,105 58, 9 2-Cinnamylthio-2-thiazoline, 56, 82 Citric acid, 58,43 Citronellal, 58, 107, 112 Cleavage of methyl ethers with iodotri-methylsilane, 59, 35 Cobalt(II) acetylacetonate, 57, 13 Conjugate addition of aryl aldehydes, 59, 53 Copper (I) bromide, 58, 52, 54, 56 59,123 COPPER CATALYZED ARYLATION OF /3-DlCARBONYL COMPOUNDS, 58, 52 Copper (I) chloride, 57, 34 Copper (II) chloride, 56, 10 Copper(I) iodide, 55, 105, 123, 124 Copper(I) oxide, 59, 206 Copper(ll) oxide, 56, 10 Copper salts of carboxylic acids, 59, 127 Copper(l) thiophenoxide, 55, 123 59, 210 Copper(l) trifluoromethanesulfonate, 59, 202... [Pg.114]

Abel has assumed that the reaction between arsenite and molecular oxygen is catalyzed by a chromium intermediate. He suggested that chromium(IV) is converted by oxygen into chromium(VI) which causes the excess oxidation of arsenic(III). However, this mechanism is also devoid of experimental support. [Pg.535]

A further dramatic comparison of the comparative reactivities of chromium alkyls in diverse oxidation states was furnished by another set of benzyl complexes. [7] Shown below, these three compound are isomers, yet they range in oxidation state from Cr to Cr °. Of the three, only the mixed-valent complex Cp G0i-ti n3-Bz)Cr(Bz)Cp, containing a Bivalent chromium bound to an T)3-benzyl and a ni-benzyl ligand, catalyzed the polymerization of ethylene. [Pg.155]

To my knowledge, the first transition metal-catalyzed reaction utilizing S-S bond activation was reported by Holmquist el al. in 1960 [14]. The reaction of (PhS)2 with CO (950 atm) in the presence of chromium oxide on AI2O3 at 275°C furnished thioester 57 in 31% yield (Eq. 7.42). [Pg.233]


See other pages where Oxidation chromium-catalyzed is mentioned: [Pg.82]    [Pg.488]    [Pg.883]    [Pg.883]    [Pg.8]    [Pg.913]    [Pg.217]    [Pg.250]    [Pg.415]    [Pg.227]    [Pg.228]    [Pg.913]    [Pg.7]    [Pg.51]    [Pg.531]    [Pg.99]    [Pg.148]    [Pg.570]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Chromium oxidants

Chromium oxide

Chromium oxids

Oxides chromium oxide

© 2024 chempedia.info