Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Other Organic Solvents

Heat a little pseudo-saccharin chloride with excess of the anhydrous alcohol in a test-tube until hydrogen chloride is no longer evolved. Recrystallise from alcohol or other organic solvent. [Pg.266]

Mono- and di saccharides are colourless solids or sjrrupy liquids, which are freely soluble in water, practically insoluble in ether and other organic solvents, and neutral in reaction. Polysaccharides possess similar properties, but are generally insoluble in water because of their high molecular weights. Both poly- and di-saccharides are converted into monosaccharides upon hydrolysis. [Pg.453]

Phenyldiazonium chloride and other similar diazonium compounds are very soluble in water, are completely insoluble in ether and other organic solvents, and are completely dissociated in aqueous solution to organic cations and inorganic anions (e.g., chloride ions) a convenient formulation is therefore, for example, CjHjNj+CP. [Pg.590]

Volatile analytes can be separated from a nonvolatile matrix using any of the extraction techniques described in Ghapter 7. Fiquid-liquid extractions, in which analytes are extracted from an aqueous matrix into methylene chloride or other organic solvent, are commonly used. Solid-phase extractions also are used to remove unwanted matrix constituents. [Pg.567]

Physical Properties. Furfuryl alcohol (2-furanmethanol) [98-00-0] is aHquid, colorless, primary alcohol with a mild odor. On exposure to air, it gradually darkens in color. Furfuryl alcohol is completely miscible with water, alcohol, ether, acetone, and ethyl acetate, and most other organic solvents with the exception of paraffinic hydrocarbons. It is an exceUent, highly polar solvent, and dissolves many resins. [Pg.79]

Most xanthene dyes are classified as basic dyes by their method of appHcation acid dyes can be produced by introduction of sulfonic acid groups. The fluoresceins, which contain carboxy and hydroxy substituents, are also acid dyes for coloration of silk. Some of the fluoresceins in which the carboxy group has been esterified, are soluble in alcohol or other organic solvents and can be classified as solvent dyes. Mordant dyes can be produced by introducing o-dihydroxy or sahcyhc acid groups (2), which when metallised can have very good lightfastness. [Pg.399]

Incineration. Gases sufftciendy concentrated to support combustion are burned in waste-heat boilers, dares, or used for fuel. Typical pollutants treated by incineration are hydrocarbons, other organic solvents and blowdown gases, H2S, HCN, CO, H2, NH, and mercaptans. VOC... [Pg.389]

Magnesium iodide is soluble in alcohols and many other organic solvents, and forms numerous addition compounds with alcohols, ethers, aldehydes, esters, and amines. One example is magnesium iodide dietherate [29964-67-8], Mgl2 prepared by gradual addition of iodine to a... [Pg.351]

The covalent character of mercury compounds and the corresponding abiUty to complex with various organic compounds explains the unusually wide solubihty characteristics. Mercury compounds are soluble in alcohols, ethyl ether, benzene, and other organic solvents. Moreover, small amounts of chemicals such as amines, ammonia (qv), and ammonium acetate can have a profound solubilizing effect (see COORDINATION COMPOUNDS). The solubihty of mercury and a wide variety of mercury salts and complexes in water and aqueous electrolyte solutions has been well outlined (5). [Pg.112]

Tetrahydronaphthalene [119-64-2] (Tetralin) is a water-white Hquid that is insoluble in water, slightly soluble in methyl alcohol, and completely soluble in other monohydric alcohols, ethyl ether, and most other organic solvents. It is a powerhil solvent for oils, resins, waxes, mbber, asphalt, and aromatic hydrocarbons, eg, naphthalene and anthracene. Its high flash point and low vapor pressure make it usehil in the manufacture of paints, lacquers, and varnishes for cleaning printing ink from rollers and type in the manufacture of shoe creams and floor waxes as a solvent in the textile industry and for the removal of naphthalene deposits in gas-distribution systems (25). The commercial product typically has a tetrahydronaphthalene content of >97 wt%, with some decahydronaphthalene and naphthalene as the principal impurities. [Pg.483]

Mineral spirits, a type of petroleum distillate popular for use in solvent-based house paints, consist mainly of aUphatic hydrocarbons with a trace of aromatics. This type of solvent finds use in oil- and alkyd-based house paints because of its good solvency with typical house paint binders and its relatively slow evaporation rate which imparts good bmshabiUty, open-time, and leveling. Other properties include lower odor, relatively lower cost, as well as safety and health hazard characteristics comparable to most other organic solvents. [Pg.541]

Health and Safety. Both N-methylpyrrohdinone and dibasic esters have very low vapor pressure which limits worker exposure to vapors. Manufacturers recommend that the same safety precautions be taken as with other organic solvents. Ha2ardous location requirements must be considered if the formula is flammable. Ventilation that reduces vapors to manufacturer s recommended exposure levels should be used. [Pg.552]

Magnesium methylate is used as a drying agent for alcohols and other organic solvents and as an intermediate in various manufacturing processes, eg, for organomagnesium compounds (79), orthocarbonic esters (80), and for oxide coatings. [Pg.27]

Sodium iodide crystallizes ia the cubic system. Physical properties are given ia Table 1 (1). Sodium iodide is soluble ia methanol, ethanol, acetone, glycerol, and several other organic solvents. SolubiUty ia water is given ia Table 2. [Pg.190]

Physical Properties. Anhydrous sodium sulfite [7757-83-7] Na2S02, is an odorless, crystalline soHd and most commercial grades other than by-product materials are colorless or off-white (331—334). It melts only with decomposition. The specific gravity of the pure soHd is 2.633 (15.4°C). Sodium sulfite is quite soluble in water. It has a maximum solubiHty of 28 g/100 g sol at 33.4°C at higher and lower temperatures, it is less soluble in water. Below this temperature, the heptahydrate crystallizes above this temperature, the anhydrous salt crystallizes. Sodium sulfite is soluble in glycerol but insoluble in alcohol, acetone, and most other organic solvents. [Pg.148]

Methima ole. This compound is a white to pale buff crystalline powder with a faint characteristic odor. It is soluble in water, ethanol, and chloroform (1 g/5 mL) and only slightly soluble in other organic solvents. A detailed chemical, analytical, spectral, and chromatographic description is available (44). It is assayed titrimetrically with NaOH (54). [Pg.54]

Stannic Chloride. Stannic chloride is available commercially as anhydrous stannic chloride, SnCl (tin(IV) chloride) stannic chloride pentahydrate, SnCl 5H20 and in proprietary solutions for special appHcations. Anhydrous stannic chloride, a colorless Aiming Hquid, fumes only in moist air, with the subsequent hydrolysis producing finely divided hydrated tin oxide or basic chloride. It is soluble in water, carbon tetrachloride, benzene, toluene, kerosene, gasoline, methanol, and many other organic solvents. With water, it forms a number of hydrates, of which the most important is the pentahydrate. Although stannic chloride is an almost perfect electrical insulator, traces of water make it a weak conductor. [Pg.65]

More frequently either methyl ethyl ketone peroxide or cyclohexanone peroxide is used for room temperature curing in conjunction with a cobalt compound such as a naphthenate, octoate or other organic solvent-soluble soap. The peroxides (strictly speaking polymerisation initiators) are referred to as catalysts and the cobalt compound as an accelerator . Other curing systems have been devised but are seldom used. [Pg.702]

Properties.—-Yellow needles m. p. 277, sublimes at 250 b. p. 382 insoluble in water, soluble in acetic acid, less soluble in benzene and other organic solvents. [Pg.226]

NHi and benzene, and somewhat less soluble in numerous other organic solvents. The -form can be maintained as a solid up to 64.4°C under a pressure of 11 600 atm, whereas the or-form melts at 44.1°C. White phosphorus is highly toxic and ingestion, inhalation or even contact with skin must be avoided the fatal dose when taken internally is about 50mg. [Pg.480]

In carrying out a molar mass determination by freezing point depression, we must choose a solvent in which the solute is readily soluble. Usually, several such solvents are available. Of these, we tend to pick one that has the largest kf. This makes ATf large and thus reduces the percent error in the freezing point measurement From this point of view, cyclohexane or other organic solvents are better choices than water, because their kf values are larger. [Pg.274]

Solubility and stability of coelenterazine. Coelenterazine is very poorly soluble in neutral aqueous buffer solutions, and the solutions are unstable in air. It can be easily dissolved in water in the presence of alkali, but the resulting solution is extremely unstable under aerobic conditions. Coelenterazine is soluble in methanol, and the solution is relatively stable. The stability is enhanced by the addition of a trace of HCl. A methanolic solution of coelenterazine can be stored for several days at — 20°C, and a methanolic solution containing 1-2 mM HCl can be stored for several months at — 70°C under aerobic conditions without significant oxidation. In many other organic solvents, coelenterazine is less stable, and spontaneously auto-oxidized at significant rates. In dimethylformamide and DMSO, it is rapidly decomposed accompanied by the emission of chemiluminescence. e-Coelenterazines are generally less stable than coelenterazines. [Pg.167]

MTN is practically insol in w (<0.0l5g/ lOOg at 25° and <0.015g/100g at 60°) sol in ale and many other organic solvents... [Pg.139]

Boron nitride is one of the most outstanding corrosion-resistant materials. It is inert to gasoline, benzene, alcohol, acetone, chlorinated hydrocarbons and other organic solvents. It is not wetted by molten aluminum, copper, cadmium, iron, antimony, bismuth, silicon, germanium, nor by many molten salts and glasses. It is used extensively as crucible material, particularly for molten metals, glasses and ceramic processing. [Pg.442]

The existence of materials now included among the conducting polymers has long been known. The first electrochemical syntheses and their characterization as insoluble systems took place well over a century ago. In 1862 Letheby reported the anodic oxidation of aniline in a solution of diluted sulphuric acid, and that the blue-black, shiny powder deposited on a platinum electrode was insoluble in HjO, alcohol, and other organic solvents. Further experiments, including analytical studies, led Goppelsroeder to postulate in 1876 that oligomers were formed by the oxidation of aniline. [Pg.3]


See other pages where Other Organic Solvents is mentioned: [Pg.390]    [Pg.97]    [Pg.92]    [Pg.26]    [Pg.322]    [Pg.491]    [Pg.54]    [Pg.396]    [Pg.354]    [Pg.429]    [Pg.521]    [Pg.521]    [Pg.521]    [Pg.521]    [Pg.522]    [Pg.522]    [Pg.522]    [Pg.1211]    [Pg.26]    [Pg.297]    [Pg.341]    [Pg.98]    [Pg.440]    [Pg.697]    [Pg.1004]    [Pg.272]   


SEARCH



Other organisms

© 2024 chempedia.info