Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Osmometry, molecular weights

In membrane osmometry, molecular weights above a million are essentially impossible to measure because there are too few particles in a given weight of polymer. On the other hand, polymers with molecular weights less than 25,000 can cause problems by themselves diffusing through the membrane. [Pg.12]

The sizes determined in this work are the apparent molecular sizes and not necessarily the sizes of the asphaltene and maltene molecules at process conditions. Association efforts for asphaltene molecules have been observed for both vapor-phase osmometry molecular weight and viscosity measurements (14, 15). The sizes reported here were measured at 0.1 wt % in tetrahydrofuran at room temperature. Other solvent systems (chloroform, 5% methanol-chloroform, and 10% trichlorobenzene-chloroform) gave similar size distributions. Under these conditions, association effects should be minimized but may still be present. At process conditions (650-850°F and 5-30% asphaltene concentration in a maltene solvent), the asphaltene sizes may be smaller. However, for this work the apparent sizes determined can be meaningfully correlated with catalyst pore size distributions to give reasonable explanations of the observed differences in asphaltene and maltene process-abilities (vide infra). In addition, the relative size distributions of the six residua are useful in explaining the different processing severities required for the various stocks. Therefore, the apparent sizes determined here have some physical significance and will be referred to just as sizes. [Pg.148]

Vapor pressure osmometry molecular weight determinations were performed using Hewlett-Packard 302 BVPO, with carbon tetrachloride as solvent. Solutions of 3,6,8-trlmethyl-3,4-dihydro-2H-l,3-benzoxazlnes (non-pol)nnerizable benzoxazines), at 37 C, were used to standardize the Instrument. [Pg.34]

By this means, yields of coke, gas, naphtha, and gasoil can be calculated from asphaltene content of the feed, VPO (vapor pressure osmometry) molecular weight of asphaltenes in toluene, and heteroatom content of asphaltenes. The problem with these correlations is that they require characterization of asphaltenes. [Pg.161]

The measurement techniques most frequently used are derived from Raoult s and Van t Hoff s laws applied to cryometry, ebulliometry, osmometry, etc. They are not very accurate with errors on the order of ten per cent. Consequently, the molecular weight is often replaced by correlated properties. The mean average temperature or viscosity can thus replace molecular weight in methods derived from ndM. [Pg.44]

In these unit conversions on H, we have used the facts that 1 atm = 760 Torr and the ratio of densities PHg/ soin - /Psoin t onverts from Torr to millimeters of solution. These numerical examples show that experiments in which Apj, ATf, or ATj, are measured are perfectly feasible for solutes of molecular weight 100, but call for unattainable sensitivity for polymeric solutes of M = 10 . By contrast, osmometry produces so much larger an effect that this method is awkward (at least for 1% concentration) for a low molecular weight solute, but is entirely feasible with the polymer. [Pg.548]

Our primary objective in this section is the discussion of practical osmometry, particularly with the goal of determining the molecular weight of a polymeric solute. We shall be concerned, therefore, with the design and operation of osmometers, with the question of units, and with circumventing the problem of nonideality. The key to these points is contained in the last section, but the details deserve additional comment. [Pg.548]

These results show more clearly than Fq. (8.126)-of which they are special cases-the effect of charge and indifferent electrolyte concentration on the osmotic pressure of the solution. In terms of the determination of molecular weight of a polyelectrolyte by osmometry. ... [Pg.574]

Hydroxyl number and molecular weight are normally determined by end-group analysis, by titration with acetic, phthaUc, or pyromellitic anhydride (264). Eor lower molecular weights (higher hydroxyl numbers), E- and C-nmr methods have been developed (265). Molecular weight deterrninations based on coUigative properties, eg, vapor-phase osmometry, or on molecular size, eg, size exclusion chromatography, are less useful because they do not measure the hydroxyl content. [Pg.366]

Among the techniques employed to estimate the average molecular weight distribution of polymers are end-group analysis, dilute solution viscosity, reduction in vapor pressure, ebuUiometry, cryoscopy, vapor pressure osmometry, fractionation, hplc, phase distribution chromatography, field flow fractionation, and gel-permeation chromatography (gpc). For routine analysis of SBR polymers, gpc is widely accepted. Table 1 lists a number of physical properties of SBR (random) compared to natural mbber, solution polybutadiene, and SB block copolymer. [Pg.493]

The molecular stmcture of the copolymers is also important. Molecular-weight measurements (osmometry, gpc) and functional group analysis are useful. Block copolymers require supermolecular (morphological) stmctural information as well. A listing of typical copolymer characterization tools and methods is shown in Table 6. [Pg.187]

In which the ratio m/n is close to 3. The silane was produced by free radical copolymerization of vinyltriethoxysilane with N-vinylpyrrolidone. Its number-average molecular weight evaluated by vapour-phase osmometry was 3500. Porous silica microballs with a mean pore diameter of 225 A, a specific surface area (Ssp) of 130 m2/g and a pore volume of 0.8 cm3/g were modified by the silane dissolved in dry toluene. After washings and drying, 0.55% by weight of nitrogen and 4.65% of carbon remained on the microballs. Chromatographic tests carried out with a series of proteins have proved the size-exclusion mechanism of their separation. [Pg.148]

The molecular weights of PAs are often not very high (M > 20,000) in this range M can be determined by endgroup analysis or, less frequently, by osmometry, Mw can be determined by light scattering. Both M and Mw can indirectly be determined by HPLC. [Pg.161]

The molecular weights and molecular weight distributions (MWD) of phenolic oligomers have been evaluated using gel permeation chromatography (GPC),23,24 NMR spectroscopy,25 vapor pressure osmometry (VPO),26 intrinsic viscosity,27 and more recently matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).28... [Pg.385]

Attempts were made to determine number average molecular weights (Mn) by osmometry (Mechrolab Model 502, high speed membrane osmometer, 1 to 10 g/1 toluene solution at 37 °C), however, in many instances irreproducible data were obtained, probably due to the diffusion of low molecular weight polymer through the membrane. This technique was abandoned in favor of gel permeation chromatography (GPC). [Pg.90]

However, because of the high price, MALDI-TOF mass spectrometers have not come into wide use. Vapor pressure osmometry (VPO), an old and traditional method for estimating molecular weight, is useful in the field of CPO chemistry. The experimental error of this measurement is approximately 10% however, the obtained data are sufficiently useful to estimate the number of porphyrins in a molecule. [Pg.80]


See other pages where Osmometry, molecular weights is mentioned: [Pg.528]    [Pg.87]    [Pg.528]    [Pg.214]    [Pg.224]    [Pg.373]    [Pg.5300]    [Pg.528]    [Pg.87]    [Pg.528]    [Pg.214]    [Pg.224]    [Pg.373]    [Pg.5300]    [Pg.41]    [Pg.268]    [Pg.546]    [Pg.548]    [Pg.549]    [Pg.551]    [Pg.660]    [Pg.276]    [Pg.380]    [Pg.350]    [Pg.142]    [Pg.360]    [Pg.360]    [Pg.431]    [Pg.527]    [Pg.366]    [Pg.221]    [Pg.512]    [Pg.920]    [Pg.409]    [Pg.490]    [Pg.115]    [Pg.130]    [Pg.23]    [Pg.51]    [Pg.154]   


SEARCH



Molecular weight determination by vapor pressure osmometry

Molecular weight determination membrane osmometry

Molecular weight determination vapor-phase osmometry

Molecular weight distribution methods membrane osmometry

Molecular weight from osmometry

Osmometry

Vapor pressure osmometry molecular weights measured

© 2024 chempedia.info