Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Osmium fluorides

Phillips and Timms [599] described a less general method. They converted germanium and silicon in alloys into hydrides and further into chlorides by contact with gold trichloride. They performed GC on a column packed with 13% of silicone 702 on Celite with the use of a gas-density balance for detection. Juvet and Fischer [600] developed a special reactor coupled directly to the chromatographic column, in which they fluorinated metals in alloys, carbides, oxides, sulphides and salts. In these samples, they determined quantitatively uranium, sulphur, selenium, technetium, tungsten, molybdenum, rhenium, silicon, boron, osmium, vanadium, iridium and platinum as fluorides. They performed the analysis on a PTFE column packed with 15% of Kel-F oil No. 10 on Chromosorb T. Prior to analysis the column was conditioned with fluorine and chlorine trifluoride in order to remove moisture and reactive organic compounds. The thermal conductivity detector was equipped with nickel-coated filaments resistant to corrosion with metal fluorides. Fig. 5.34 illustrates the analysis of tungsten, rhenium and osmium fluorides by this method. [Pg.192]

The chemistry of osmium fluorides and fluoro complexes differs sufficiently from that of the chloro, bromo and iodo species to warrant separate treatment here. The early review of Canterford and Colton is still useful for the general halide chemistry of the element.736... [Pg.609]

The NO + MF, (except NO -f WF,) reactions proceed spontaneously at 20°. The reactions were followed tensimetrically. Gaseous products were identified by infrared spectroscopy and the solid products were examined by. y-ray powder-photography. Both ReF, and OsF, formed NO+[MF,] (cub.) salts and neither salt could be induced to combine with more NO to yield the quadrivalent (NO),MF, compound. In their reactions with nitrosyl fluoride at 20°, however, the rhenium and osmium fluorides are clearly differentiated ReF, readily forms a thermally stable 2 1 adduct, which is isomorphous with (NOjjWFg, whereas the OsF, -i- ONF reaction is complex. The identification of small quantities of nitrogen oxide trifluoride, in the gaseous product of the reaction, indicate the existence of an... [Pg.244]

Evidence that the halides have an effect on the electron density at the metal center has been achieved by measuring the enthalpies of protonation of metal complexes containing the four different halogens. - As shown in Equation 4.118, these studies show that the absolute value of the enthalpy of protonation of the osmium-fluoride complex at the metal center is much larger than that of the protonation of the chloride complex, which is larger than that of the protonation of the bromide and iodide complexes. [Pg.201]

As osmium forms a tetroxide, OsFg might possibly exist, especially in view of the existence of the osmium(VIII) oxyfluorides, but MO calculations indicate the Os—F bond would be weaker in the binary fluoride. It is also likely that non-bonding repulsions between eight fluorines would make an octafluoride unstable [23b],... [Pg.4]

Antimony, arsenic, selenium, tellurium, iridium, iron, molybdenum, osmium, potassium, rhodium, tungsten (and when primed with charcoal,) aluminium, copper, lead, magnesium, silver, tin, zinc. Interaction of lithium or calcium with chlorine tri- or penta-fluorides is hypergolic and particularly energetic. [Pg.1343]

Manganese trichloride oxide, 4141 Manganese trifluoride, 4335 Mercury(II) bromide, 0269 Mercury(I) fluoride, 4312 Mercury(II) iodide, 4602 Molybdenum hexafluoride, 4365 Molybdenum pentachloride, 4180 Neptunium hexafluoride, 4366 Osmium hexafluoride, 4370 Palladium tetrafluoride, 4347 Palladium trifluoride, 4341... [Pg.236]

Nitrosyl tetrafluorochlorate, 3985 Nitrous acid, 4435 Nitryl chloride, 4025 Nitryl fluoride, 4303 Nitryl hypochlorite, 4026 Nitryl hypofluorite, 4304 Nitryl perchlorate, 4029 Osmium hexafluoride, 4370 Osmium(VIII) oxide, 4858 Oxygen (Gas), 4831 Oxygen (Liquid), 4832 Oxygen difluoride, 4317 Ozone, 4846... [Pg.309]

Sir Humphry Davy attempted to isolate this unidentified element through electrolysis—but failed. It was not until 1824 that Jons Jakob Berzehus (1779—1848), who had earlier discovered cerium, osmium, and iridium, became the first person to separate the element silicon from its compound molecule and then identify it as a new element. Berzehus did this by a two-step process that basically involved heating potassium metal chips with a form of silica (SiF = silicon tetrafluoride) and then separating the resulting mixture of potassium fluoride and silica (SiF + 4K —> 4KF + Si). Today, commercial production of sihcon features a chemical reaction (reduction) between sand (SiO ) and carbon at temperatures over 2,200°C (SiO + 2C + heat— 2CO + Si). [Pg.196]

The method by which lactone 17 was obtained was not without its own implications for the synthesis. Treatment of 16 with dry tetra n-butylammonium fluoride in acetonitrile achieved desilylation. Not unexpectedly, this process triggered migration of the C5 benzoyl group to the newly unveiled C4 alcohol. The C5 alcohol thereby liberated underwent lactonization to the desired 17 (61% yield from 16). Indeed, reaction of 17 with stoichiometric osmium tetroxide in pyridine-THF afforded a single diol formulated as 18 in 97% yield (see Figure 4). [Pg.165]

The main emphasis was laid, in this initial work, on Haber s catalysts, e.g., osmium and uranium compounds, as well as on a series of iron catalysts. Some other metals and their compounds which we tested are, as we know today, less accessibble to an activation by added substances than iron. Therefore, they showed no improvement or only small positive effects if used in the form of multicomponent catalysts. Finally, the substances which we added to the metal catalysts in this early stage of our work were mostly of the same type as those which had proved to favor the nitride formation, e.g., the flux promoting chlorides, sulfates, and fluorides of the alkali and alkaline earth metals. Again, we know today that just these compounds do not promote, but rather impair the activity of ammonia catalysts. [Pg.88]

Reaction with fluoride ion forms the adduct oxofluoro ion, [0s04F2]2. For example, osmium tetroxide reacts with sodium fluoride to form an oxofluoro salt of sodium ... [Pg.672]

The octahedral holes occupied by osmium ions are considerably contracted and the affected fluoride ions are moved out of the plane of the potassium ions. This is why the KF -layers appear puckered. The 6 K—F-distances in these layers are 2.84 A, six fluoride ions at distances of 3.17 A in the neighbouring layers complete the 12-coordination about the potassium. [Pg.11]

Chloroxytrifluoromethane, 26 137-139 reactions, 26 140-143 addition to alkenes, 26 145-146 oxidative addition, 26 141-145 vibrational spectra, 26 139 Chloryl cation, 18 356-359 internal force constants of, 18 359 molecular structure of, 18 358, 359 properties of, 18 357, 358 synthesis of, 18 357, 358 vibrational spectra of, 18 358, 359 Chloryl compounds, reactions of, 5 61 Chloryl fluoride, 18 347-356 chemical properties of, 18 353-356 fluoride complexes of, 5 59 molecular structure of, 18 349-352 physical properties of, 18 352, 353 preparation, 5 55-57 and reactions, 27 176 properties of, 5 48 reactions, 5 58-61, 18 356 synthesis of, 18 347-349 thermal decomposition of, 18 354, 355 vapor pressures, 5 57, 18 353 vibrational spectra of, 18 349-352 Chloryl ion, 9 277 Cholegobin, 46 529 Cholesterol, astatination, 31 7 Cholorofluorphosphine, 13 378-380 h CHjPRj complexes, osmium, 37 274 Chromatium, HiPIP sequence, 38 249 Chromatium vinosum HiPIP, 38 108, 133 Fe4S4 + core, 33 60 Chromato complexes, osmium, 37 287... [Pg.47]


See other pages where Osmium fluorides is mentioned: [Pg.285]    [Pg.285]    [Pg.291]    [Pg.178]    [Pg.74]    [Pg.185]    [Pg.185]    [Pg.185]    [Pg.185]    [Pg.455]    [Pg.370]    [Pg.195]    [Pg.742]    [Pg.85]    [Pg.123]    [Pg.141]    [Pg.321]    [Pg.321]    [Pg.178]    [Pg.1182]    [Pg.201]    [Pg.201]    [Pg.1578]    [Pg.2385]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Osmium complexes fluorides

Osmium oxide fluorides

Osmium(VI) Fluoride

© 2024 chempedia.info