Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organomercurials oxidation

Cacchi and Palmier (83T3373) investigated a new entry into the quinoline skeleton by palladium-catalyzed Michael-type reactions. They found that phenyl mercurial 134 was a useful intermediate for the synthesis of quinoline derivatives, and that by selecting the reaction conditions the oxidation level of the heterocyclic ring in the quinoline skeleton can be varied. On such example is shown in Scheme 16. PdCla-catalyzed coupling between organomercurial reagent 134 and enone 135 delivered adduct 136 which was subsequently cyclized to quinoline 137 under acidic conditions. [Pg.22]

Monoalkylthallium(III) compounds can be prepared easily and rapidly by treatment of olefins with thallium(III) salts, i.e., oxythallation (66). In marked contrast to the analogous oxymercuration reaction (66), however, where treatment of olefins with mercury(II) salts results in formation of stable organomercurials, the monoalkylthallium(III) derivatives obtained from oxythallation are in the vast majority of cases spontaneously unstable, and cannot be isolated under the reaction conditions employed. Oxythallation adducts have been isolated on a number of occasions (61, 71,104,128), but the predominant reaction pathway which has been observed in oxythallation reactions is initial formation of an alkylthallium(III) derivative and subsequent rapid decomposition of this intermediate to give products derived by oxidation of the organic substrate and simultaneous reduction of the thallium from thallium(III) to thallium(I). The ease and rapidity with which these reactions occur have stimulated interest not only in the preparation and properties of monoalkylthallium(III) derivatives, but in the mechanism and stereochemistry of oxythallation, and in the development of specific synthetic organic transformations based on oxidation of unsaturated systems by thallium(III) salts. [Pg.173]

Agemian and Chau [55] have described an automated method for the determination of total dissolved mercury in fresh and saline waters by ultraviolet digestion and cold vapour atomic absorption spectroscopy. A flow-through ultraviolet digester is used to carry out photo-oxidation in the automated cold vapour atomic absorption spectrometric system. This removes the chloride interference. Work was carried out to check the ability of the technique to degrade seven particular organomercury compounds. The precision of the method at levels of 0.07 pg/1, 0.28 pg/1, and 0.55 pg/1 Hg was 6.0%, 3.8%, and 1.00%, respectively. The detection limit of the system is 0.02 pg/1. [Pg.463]

Organomercurials formed in such processes are oxidized further and may inhibit the reduction of Pb(II) ions at similar potentials81 ... [Pg.679]

Support-bound transition metal complexes have mainly been prepared as insoluble catalysts. Table 4.1 lists representative examples of such polymer-bound complexes. Polystyrene-bound molybdenum carbonyl complexes have been prepared for the study of ligand substitution reactions and oxidative eliminations [51], Moreover, well-defined molybdenum, rhodium, and iridium phosphine complexes have been prepared on copolymers of PEG and silica [52]. Several reviews have covered the preparation and application of support-bound reagents, including transition metal complexes [53-59]. Examples of the preparation and uses of organomercury and organo-zinc compounds are discussed in Section 4.1. [Pg.165]

Alkenes from organomercurials.1 Photoinitiated reaction of diphenyl diselenide with the organomercurial 1 provides a mixture of the corresponding a- and P-phenyl selenides, which undergo oxidative elimination to 2. The reaction provides a key step in a total synthesis of K-76 (3), which counteracts the inflammatory... [Pg.125]

For reductions, hanging mercury drop electrodes or mercuryfilm electrodes are frequently used owing to their microscopic smoothness and because of the large overpotential for hydrogen evolution characteristic for this electrode material. Mercury film electrodes are conveniently prepared by the electrochemical deposition of mercury on a platinum electrode from an acidic solution of an Hg2+ salt, e.g. the nitrate. However, the oxidation of mercury metal to mercury salts or organomercurials at a low potential, 0.3-0.4 V versus the saturated calomel electrode (SCE), prevents the use of these electrodes for oxidations. [Pg.134]

Organometallic compounds with covalent, sparsely polarized C-M bonds do not usually epimerize readily. Thus, organoaluminum or organomercury compounds are configurationally stable up to 150 °C [540, 541] if oxidants or other radical chain... [Pg.198]

Latent forms of MMPs can be activated by mechanisms which cause the dissociation of the intramolecular complex between a particular cysteine residue and the required zinc metal ligand (a complex that blocks the active site) [47], This occurs because the cysteine of the latent enzyme is coordinated to the active site in a particular way that blocks the MMP active site. Collectively, the activation of MMPs occurs through a process which has been termed the cysteine-switch . Activators of the MMPs include proteases (e.g. plasmin), conformational perturbants (SDS, NaSCN), heavy metals and organomercurials (e.g. Au(I) compounds, Hg(II)), oxidants (e.g. OC1-), disulfide compounds (e.g. GSSG) and sulfhydryl alkylating agents (e.g. V-ethylmaleimide) [47 and refs, therein]. [Pg.312]

The inorganic products of the ozonolysis reactions were determined for three different organomercurials. Ozonolysis of two dialykylmer-curials produced a mixture of mercuric chloride, mercurous chloride, and mercuric oxide (Reactions 3 and 14, Table I) while one alkylmercuric halide gave only mercuric and mercurous chlorides (Reaction 13, Table I). A known mixture of the three salts was tested for its stability to the reaction conditions. The salts were ozonized as a solution/mixture with methylene chloride. Powder x-ray diffraction showed no difference in the mercury salt mixture after a 2-hour ozonation at 10°C. [Pg.83]

Reaction Stoichiometry. The results of the stoichiometry study (see Table II) were varied but did suggest a 1 1 ozone mercurial ratio for the cleavage of a carbon-mercury bond. Several problems were evident in such a study. Since mostly only the highest oxidation states for carbon were observed in the products of partial ozonation of 1°, 2°, and 3° organomercurials, it could be assumed that ozonolysis of the C—Hg bond involved the slowest step in the total reaction sequence. Hence, some... [Pg.91]


See other pages where Organomercurials oxidation is mentioned: [Pg.183]    [Pg.122]    [Pg.198]    [Pg.198]    [Pg.165]    [Pg.342]    [Pg.1257]    [Pg.455]    [Pg.354]    [Pg.412]    [Pg.281]    [Pg.283]    [Pg.61]    [Pg.354]    [Pg.227]    [Pg.969]    [Pg.183]    [Pg.2594]    [Pg.130]    [Pg.3]    [Pg.117]    [Pg.61]    [Pg.399]    [Pg.174]    [Pg.253]    [Pg.204]    [Pg.61]    [Pg.154]    [Pg.92]    [Pg.2592]    [Pg.111]   
See also in sourсe #XX -- [ Pg.129 ]




SEARCH



Organomercurials

Organomercury

Organomercurys

© 2024 chempedia.info