Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic Rhodamine

Organic Dye Lasers. Organic dye lasers represent the only weU-developed laser type in which the active medium is a Hquid (39,40). The laser materials are dyestuffs, of which a common example is rhodamine 6G [989-38-8]. The dye is dissolved in very low concentration in a solvent such as methyl alcohol [67-56-17, CH OH. Only small amounts of dye are needed to produce a considerable effect on the optical properties of the solution. [Pg.8]

The system of anionic surfactants is another example of organic compounds mixtures. The procedure of their determination is proposed using coordinate pH in two-dimensional spectra of ionic associates anionic surfactants with rhodamine 6G. This procedure was tested on the analysis of surfactant waters and domestic detergents. [Pg.126]

Microscopic examination ( smear ) detects about 8 to 10 X 1CF organisms/L of specimen using the older AFB (acid-fast bacillus) stain, with the newer auramine-rhodamine fluorsecent... [Pg.1106]

NHS-rhodamine is insoluble directly in aqueous solution and should be dissolved in organic solvent prior to addition of a small aliquot to a buffered reaction medium. Concentrated stock solutions may be prepared in DMSO or DMF. Such solutions are relatively stable for short... [Pg.420]

Organic fluorescent dyes with the appropriate spectral properties also can be paired with lanthanide chelates in FRET systems. For instance, many rhodamine dyes and the cyanine dye Cy5 have ideal excitation wavelengths for receiving energy from a nearby europium chelate. The LeadSeeker assay system from GE Healthcare incorporates various Cy5-labeled antibodies for developing specific analyte assays. In addition, if using a terbium chelate as the donor, then a Cy3 fluorescent dye can be used in assays as the acceptor. [Pg.479]

The first, and still the most commonly used, of the tunable lasers were those based upon solutions of organic dyes. The first dye laser was developed by Sorokin and Lankard 05), and used a "chloro-aluminum phthalocyanine" (sic) solution. Tunable dye lasers operating throughout the visible spectrum were soon produced, using dyes such as coumarins, fluorescein, rhodamines, etc. Each dye will emit laser radiation which is continuously tunable over approximately the fluorescence wavelength range of the dye. [Pg.456]

The optical properties of organic dyes (Fig. ld-f, Table 1) are controlled by the nature of the electronic transition(s) involved [4], The emission occurs either from an electronic state delocalized over the whole chromophore (the corresponding fluorophores are termed here as resonant or mesomeric dyes) or from a charge transfer (CT) state formed via intramolecular charge transfer (ICT) from the initially excited electronic state (the corresponding fluorophores are referred to as CT dyes) [4], Bioanalytically relevant fluorophores like fluoresceins, rhodamines, most 4,4 -difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY dyes), and cyanines (symmetric... [Pg.12]

Quantum clusters are highly photostable when compared with organic fluorophores. A study was conducted to check the photostability of clusters in comparison to organic fluorophores and semiconductor quantum dots [12]. Photostability of a gold cluster capped with dihydrolipoic acid (AuNC DHLA) was compared with polymer coated CdSe/ZnS semiconductor quantum dots and two different organic fluorophores namely fluorescein and rhodamine 6G (Fig. 5). For the study, 20 pi of fluorescent AuNC DHLA was dissolved in sodium borate buffer of pH 9. The sample was loaded into a quartz cuvette and was exposed to blue-light (480 nm)... [Pg.344]

Fig. 5 Photostability of fluorescent Au nanoclusters (AuNC DHLA) compared with semiconductor quantum dots (polymer-coated QD 520 from Invitrogen) and organic fluorophores (fluorescein, rhodamine 6G) [12]... Fig. 5 Photostability of fluorescent Au nanoclusters (AuNC DHLA) compared with semiconductor quantum dots (polymer-coated QD 520 from Invitrogen) and organic fluorophores (fluorescein, rhodamine 6G) [12]...
Figure 14.2. Chemical structures of some commonly used organic fluorescent probes 1, fluorescein-5-isothiocyanate (FITC) 2, tetramethylrhodamine-5-isothiocyanate (TRITC) 3, 5-carboxyrhodamine B 4, rhodamine X isothiocyanate (XRITC) 5, malachite green isothiocyanate 6, eosin-5-isothiocyanate 7, 1-pyreneisothiocyanate 8, 7-dimethylaminocoumarin-4-acetic acid 9, CY5.180Su. Figure 14.2. Chemical structures of some commonly used organic fluorescent probes 1, fluorescein-5-isothiocyanate (FITC) 2, tetramethylrhodamine-5-isothiocyanate (TRITC) 3, 5-carboxyrhodamine B 4, rhodamine X isothiocyanate (XRITC) 5, malachite green isothiocyanate 6, eosin-5-isothiocyanate 7, 1-pyreneisothiocyanate 8, 7-dimethylaminocoumarin-4-acetic acid 9, CY5.180Su.
Liu etal. [32] reported the characteristics and reactivity of highly ordered mesoporous carbon-titania hybrid materials synthesized via organic-inorganic-amphiphilic coassembly followed by in situ crystallization. In the degradation of Rhodamine B these materials also show enhanced properties due to the dispersion/stabilization of small titania nanocrystals and the adsorptive capacity of the nanocarbon. [Pg.434]

Pertechnetate in neutral and alkaline media can be extracted into solutions of tetra-alkylammonium iodides in benzene or chloroform. With tetra-n-heptylammo-nium iodide (7.5 x 10 M) in benzene distribution coefficients up to 18 can be obtained . A solution of fV-benzoyl-iV-phenylhydroxylamine (10 M) in chloroform can be used to extract pertechnetate from perchloric acid solution with a distribution coefficient of more than 200, if the concentration of HCIO is higher than 6 M The distribution of TcO between solutions of trilauryl-ammonium nitrate in o-xylene and aqueous solutions of nitrate has been measured. In 1 M (H, Li) NOj and 0.015 M trilaurylammonium nitrate the overall equilibrium constant has been found to be log K = 2.20 at 25 °C. The experiments support an ion exchange reaction . Pertechnetate can also be extracted with rhodamine-B hydrochloride into organic solvents. The extraction coefficient of Tc (VII) between nitrobenzene containing 0.005 %of rhodamine-B hydrochloride and aqueous alcoholic " Tc solution containing 0.0025 % of the hydrochloride, amounts to more than 5x10 at pH 4.7 . [Pg.124]

Several other analytical procedures exist in which solvent extraction may be applied. Thus extraction has been used in a limited number of analyses with procedures such as (1) luminescence (fluorimetry), where, for example, the detection limit of rhodamine complexes of gallium or indium can be increased by extraction [28] (2) electron spin resonance using a spin-labelled extractant [29] and (3) mass spectrometry, where an organic extract of the analyte is evaporated onto pure AI2O3 before analysis [30]. [Pg.571]


See other pages where Organic Rhodamine is mentioned: [Pg.133]    [Pg.245]    [Pg.160]    [Pg.381]    [Pg.211]    [Pg.248]    [Pg.46]    [Pg.201]    [Pg.433]    [Pg.18]    [Pg.112]    [Pg.112]    [Pg.156]    [Pg.363]    [Pg.492]    [Pg.623]    [Pg.623]    [Pg.1230]    [Pg.457]    [Pg.24]    [Pg.443]    [Pg.9]    [Pg.19]    [Pg.25]    [Pg.26]    [Pg.28]    [Pg.79]    [Pg.198]    [Pg.286]    [Pg.292]    [Pg.308]    [Pg.345]    [Pg.3]    [Pg.60]    [Pg.370]    [Pg.89]    [Pg.171]    [Pg.199]   
See also in sourсe #XX -- [ Pg.249 , Pg.250 , Pg.260 , Pg.261 ]

See also in sourсe #XX -- [ Pg.6 , Pg.945 ]




SEARCH



Laser dyes, organic rhodamine

Rhodamin

Rhodamine

Rhodamines

© 2024 chempedia.info