Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

On the Basis of Polymerization

On the basis of the recent investigations we can outline two possible ways of creating materials on the basis of polymerization-filled composites ... [Pg.49]

Z- Configuration is typical of the majority of a-aryl(hetaryl)-/V-alkylaldo-nitrones. The isolation of -isomers in the condensation of aromatic aldehydes with iV-j3-]ihenyletli Tliydroxylamine has been described (155). The synthesis of a, N -diary lnitrones gives best results if acidic catalysis is employed (156), or when clay is used as a catalyst (157). Significant reduction of reaction time and increase in the yields of nitrones can be achieved if microwave irradiation is used (158, 159). On the basis of polymeric arylaldehydes, the synthesis of polymeric a,-diarylnitrones has been described (160). [Pg.150]

The abnormal rotation and the anomalous dispersion cannot be accounted for satisfactorily on the basis of polymerization, electrolytic dissociation hydrates, lactones of the ordinary type, or of a structural reversal of the asymmetric carbon atom. [Pg.4]

On the basis of polymerization mechanism, the processes of polymerization can be classified in two groups (i) step growth polymerization and (ii) chain growth polymerization. [Pg.125]

The experimental express-method of Devalue estimation on the basis of polymeric solutions intrinsic viscosity [ii] measurements only was proposed in paper... [Pg.8]

The end of the new block in such block polymerizations is still living, that is, further monomer can be added on. Living polymers and block polymers can, however, be killed by isomerization or by the purposeful addition of suitable reagents. If the new species thereby formed cannot start further polymerization, these are called termination reactions. If, however, the new species can initiate polymerization, then transfer reactions are involved. Thus, differentiation between transfer and termination reactions is on the basis of polymerization activity, not, however, on the basis of the mechanism, since something is transferred in many termination reactions. [Pg.151]

On the basis of the mechanism of cationic polymerization predict the alkenes of molecu lar formula C12H24 that can most reasonably be formed when 2 methylpropene [(CH3)2C=CH2] IS treated with sulfunc acid... [Pg.278]

The various elastic and viscoelastic phenomena we discuss in this chapter will be developed in stages. We begin with the simplest the case of a sample that displays a purely elastic response when deformed by simple elongation. On the basis of Hooke s law, we expect that the force of deformation—the stress—and the distortion that results-the strain-will be directly proportional, at least for small deformations. In addition, the energy spent to produce the deformation is recoverable The material snaps back when the force is released. We are interested in the molecular origin of this property for polymeric materials but, before we can get to that, we need to define the variables more quantitatively. [Pg.134]

On the basis of these observations, criticize or defend the following proposition Regardless of the monomer used, zero-order Markov (Bernoulli) statistics apply to all free radical, anionic, and cationic polymerizations, but not to Ziegler-Natta catalyzed systems. [Pg.502]

Monomers. A wide variety of monomers can be used, and they are chosen on the basis of cost and abiUty to impart specific properties to the final product. Water solubiUties of iadustriaHy important monomers are shown ia Table 1 (38). The solubiUty of the monomer ia water affects the physical chemistry of the polymerization. Functional monomers like methacrylic and acryUc acid, infinitely soluble ia water, are also used. These monomers impart long-term shelf stabiUty to latices by acting as emulsifiers. The polymerization behavior of some monomers, such as methacrylic acid, as well as the final latex properties are iafiuenced by pH. For optimum results with these acids, polymerization is best performed at a pH of ca 2. After polymerization, the latex is neutralized to give adequate shelf stabiUty at tractable viscosities. [Pg.24]

Initiators. The degree of polymerization is controlled by the addition rate of initiator(s). Initiators (qv) are chosen primarily on the basis of half-life, the time required for one-half of the initiator to decay at a specified temperature. In general, initiators of longer half-Hves are chosen as the desired reaction temperature increases they must be well dispersed in the reactor prior to the time any substantial reaction takes place. When choosing an initiator, several factors must be considered. For the autoclave reactor, these factors include the time permitted for completion of reaction in each zone, how well the reactor is stirred, the desired reaction temperature, initiator solubiUty in the carrier, and the cost of initiator in terms of active oxygen content. For the tubular reactors, an additional factor to take into account is the position of the peak temperature along the length of the tube (9). [Pg.375]

C2S2, is a red Hquid (mp —0.5° C, bp 60—70°C at 1.6 kPa (12 mm Hg)) produced by the action of an electric arc on carbon disulfide (1 4). The stmcture has been shown to be S=C=C=C=S on the basis of its reactions to form malonic acid derivatives and on the basis of physical measurements. It is unstable and decomposes ia a few weeks at room temperature it decomposes explosively when heated rapidly at 100—120°C with formation of a black polymeric substance (C2S2) (5,6). Dilute solutions ia CS2 are fairly stable, but photochemical polymerisation to (C2S2) occurs. [Pg.129]

The solubilities of the various gases in [BMIM][PFg] suggests that this IL should be an excellent candidate for a wide variety of industrially important gas separations. There is also the possibility of performing higher-temperature gas separations, thanks to the high thermal stability of the ILs. For supported liquid membranes this would require the use of ceramic or metallic membranes rather than polymeric ones. Both water vapor and CO2 should be removed easily from natural gas since the ratios of Henry s law constants at 25 °C are -9950 and 32, respectively. It should be possible to scrub CO2 from stack gases composed of N2 and O2. Since we know of no measurements of H2S, SO, or NO solubility in [BMIM][PFg], we do not loiow if it would be possible to remove these contaminants as well. Nonetheless, there appears to be ample opportunity for use of ILs for gas separations on the basis of the widely varying gas solubilities measured thus far. [Pg.91]

The SCB distribution (SCBD) has been extensively studied by fractionation based on compositional difference as well as molecular size. The analysis by cross fractionation, which involves stepwise separation of the molecules on the basis of composition and molecular size, has provided information of inter- and intramolecular SCBD in much detail. The temperature-rising elution fractionation (TREE) method, which separates polymer molecules according to their composition, has been used for HP LDPE it has been found that SCB composition is more or less uniform [24,25]. It can be observed from the appearance of only one melt endotherm peak in the analysis by differential scanning calorimetry (DSC) (Fig. 1) [26]. Wild et al. [27] reported that HP LDPE prepared by tubular reactor exhibits broader SCBD than that prepared by an autoclave reactor. The SCBD can also be varied by changing the polymerization conditions. From the cross fractionation of commercial HP LDPE samples, it has been found that low-MW species generally have more SCBs [13,24]. [Pg.278]

The proposed mechanism is based on the basis of the fact that ylides (Scheme 23 and Scheme 24) undergo bond fission between the phosphorus atom and the phenyl group in TPPY as reported by Nagao et al. [51] and between the sulfur atom and the phenyl group in POSY as observed in triphenylsulfonium salts [52-55] when they are irradiated by a high-pressure mercury lamp. The phenyl radicals thus produced participate in the initiation of polymerization. [Pg.377]


See other pages where On the Basis of Polymerization is mentioned: [Pg.83]    [Pg.167]    [Pg.179]    [Pg.552]    [Pg.165]    [Pg.597]    [Pg.10]    [Pg.10]    [Pg.249]    [Pg.83]    [Pg.167]    [Pg.179]    [Pg.552]    [Pg.165]    [Pg.597]    [Pg.10]    [Pg.10]    [Pg.249]    [Pg.317]    [Pg.265]    [Pg.377]    [Pg.381]    [Pg.658]    [Pg.431]    [Pg.272]    [Pg.398]    [Pg.291]    [Pg.530]    [Pg.540]    [Pg.543]    [Pg.178]    [Pg.269]    [Pg.108]    [Pg.288]    [Pg.116]    [Pg.230]    [Pg.278]    [Pg.981]    [Pg.298]    [Pg.236]    [Pg.376]    [Pg.541]    [Pg.295]   


SEARCH



© 2024 chempedia.info