Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Osmium, olefin dihydroxylation

Mono-, di-, and trisubstituted olefins undergo osmium-catalyzed enantioselective dihydroxylation in the presence of the (R)-proline-substituted hydroquinidine 3.9 to give diols in 67-95% yields and in 78-99% ee.75 Using potassium osmate(VI) as the catalyst and potassium carbonate as the base in a tm-butanol/water mixture as the solvent, olefins are dihydroxylated stereo- and enantioselectively in the presence of 3.9 and potassium ferricyanide with sodium chlorite as the stoichiometric oxidant the yields and enantiomeric excesses of the... [Pg.58]

Abstract The applications of hybrid DFT/molecular mechanics (DFT/MM) methods to the study of reactions catalyzed by transition metal complexes are reviewed. Special attention is given to the processes that have been studied in more detail, such as olefin polymerization, rhodium hydrogenation of alkenes, osmium dihydroxylation of alkenes and hydroformylation by rhodium catalysts. DFT/MM methods are shown, by comparison with experiment and with full quantum mechanics calculations, to allow a reasonably accurate computational study of experimentally relevant problems which otherwise would be out of reach for theoretical chemistry. [Pg.117]

The computational study of the osmium dihydroxylation of aliphatic al-kenes is much more complicated than the case of aromatic alkenes due to the large number of conformations that the former could adopt. To overcome this issue, we considered the system to be composed of two different parts the catalyst and the olefin. For the catalyst, the conformation considered is that from the X-ray structure. As already shown in the study of styrene [95], and in some experimental works [98], the catalyst is a fairly rigid molecule. For the aliphatic alkenes under study, there is a large number of possible conformations in addition, the stability of an olefin conformation is also affected by the interactions between the olefin substituent and the catalyst. Therefore, the catalyst must be included in the conformational search. The conformational analysis was done using a scheme based on the systematic search approach [99]. The strategy consisted of two parts first we developed a method to identify all of the possible conformations afterwards, we screened all of the possible conformations at MM level to select the most stable. Finally, we only carried out the relatively expensive QM/MM calculations on these selected conformations. [Pg.136]

The discovery of iron complexes that can catalyze olefin czs-dihydroxylation led Que and coworkers to explore the possibility of developing asymmetric dihydroxylation catalysts. Toward this end, the optically active variants of complexes 11 [(1R,2R)-BPMCN] and 14 [(1S,2S)- and (lP-2P)-6-Me2BPMCN] were synthesized [35]. In the oxidation of frans-2-heptene under conditions of limiting oxidant, 1R,2R-11 was foimd to catalyze the formation of only a minimal amount of diol with a slight enantiomeric excess (ee) of 29%. However, 1P-2P-14 and 1S,2S-14 favored the formation of diol (epoxide/diol = 1 3.5) with ees of 80%. These first examples of iron-catalyzed asymmetric ds-dihydroxylation demonstrate the possibility of developing iron-based asymmetric catalysts that may be used as alternatives to currently used osmium-based chemistry [45]. [Pg.459]

The osmium-catalyzed vicinal dihydroxylation of olefins with single oxygen donors, typically tert-butyl hydroperoxide or N -methylmorpholine-JV-oxide (NMO), has been known for three decades and forms the basis of the Sharpless asymmetric dihydroxylation of olefins. Recently, Sharpless and coworkers reported that particularly electron-deficient olefins are dihydroxylated more efficiently with NMO (Eq. 2) when the pH of... [Pg.223]

Diols are applied on a multimilhon ton scale as antifreezing agents and polyester monomers (ethylene and propylene glycol) [58]. In addition, they are starting materials for various fine chemicals. Intimately coimected with the epoxidation-hydrolysis process, dihydroxylation of C=C double bonds constitutes a shorter and more atom-efficient route to 1,2-diols. Although considerable advancements in the field of biomimetic nonheme complexes have been achieved in recent years, still osmium complexes remain the most efficient and reliable catalysts for dihydroxylation of olefins (reviews [59]). [Pg.90]

Dapprich, S., Ujaque, G., Maseras, F., Lledos, A., Musaev, D. G., Morokuma, K., 1996, Theory Does Not Support an Osmaoxetane Intermediate in the Osmium-Catalyzed Dihydroxylation of Olefins , J. Am, Chem. Soc., 118, 11660. [Pg.284]

A photo-induced dihydroxylation of methacryamide by chromium (VI) reagent in aqueous solution was recently reported and may have potential synthetic applications in the syn-dihydroxylation of electron-deficient olefins.63 Recently, Minato et al. demonstrated that K3Fe(CN)6 in the presence of K2C03 in aqueous rm-butyl alcohol provides a powerful system for the osmium-catalyzed dihydroxylation of olefins.64 This combination overcomes the disadvantages of overoxidation and low reactivity on hindered olefins related to previous processes (Eq. 3.14). [Pg.55]

Amino-Hydroxylation. A related reaction to asymmetric dihydroxylation is the asymmetric amino-hydroxylation of olefins, forming v/c-ami noalcohols. The vic-hydroxyamino group is found in many biologically important molecules, such as the (3-amino acid 3.10 (the side-chain of taxol). In the mid-1970s, Sharpless76 reported that the trihydrate of N-chloro-p-toluenesulfonamide sodium salt (chloramine-T) reacts with olefins in the presence of a catalytic amount of osmium tetroxide to produce vicinal hydroxyl p-toluenesulfonamides (Eq. 3.16). Aminohydroxylation was also promoted by palladium.77... [Pg.59]

Another useful method for the asymmetric oxidation of enol derivatives is osmium-mediated dihydroxylation using cinchona alkaloid as the chiral auxiliary. The oxidation of enol ethers and enol silyl ethers proceeds with enantioselectivity as high as that of the corresponding dihydroxylation of olefins (vide infra) (Scheme 30).139 It is noteworthy that the oxidation of E- and Z-enol ethers gives the same product, and the E/Z ratio of the substrates does not strongly affect the... [Pg.226]

More than sixty years ago, Criegee reported that the dihydroxylation of olefins by osmium tetroxide was accelerated by the addition of a tertiary amine.165 166 Later, this discovery prompted the study of asymmetric dihydroxylation, because the use of an optically active tertiary amine was expected to increase the reaction rate (kc > k0) and to induce asymmetry (Scheme 41).167... [Pg.232]

The osmium-catalyzed dihydroxylation reaction, that is, the addition of osmium tetr-oxide to alkenes producing a vicinal diol, is one of the most selective and reliable of organic transformations. Work by Sharpless, Fokin, and coworkers has revealed that electron-deficient alkenes can be converted to the corresponding diols much more efficiently when the pH of the reaction medium is maintained on the acidic side [199]. One of the most useful additives in this context has proved to be citric acid (2 equivalents), which, in combination with 4-methylmorpholine N-oxide (NMO) as a reoxidant for osmium(VI) and potassium osmate [K20s02(0H)4] (0.2 mol%) as a stable, non-volatile substitute for osmium tetroxide, allows the conversion of many olefinic substrates to their corresponding diols at ambient temperatures. In specific cases, such as with extremely electron-deficient alkenes (Scheme 6.96), the reaction has to be carried out under microwave irradiation at 120 °C, to produce in the illustrated case an 81% isolated yield of the pure diol [199]. [Pg.173]

The history of asymmetric dihydroxylation51 dates back 1912 when Hoffmann showed, for the first time, that osmium tetroxide could be used catalytically in the presence of a secondary oxygen donor such as sodium or potassium chlorate for the cA-dihydroxylation of olefins.52 About 30 years later, Criegee et al.53 discovered a dramatic rate enhancement in the osmylation of alkene induced by tertiary amines, and this finding paved the way for asymmetric dihydroxylation of olefins. [Pg.221]

The first attempt to effect the asymmetric cw-dihydroxylation of olefins with osmium tetroxide was reported in 1980 by Hentges and Sharpless.54 Taking into consideration that the rate of osmium(VI) ester formation can be accelerated by nucleophilic ligands such as pyridine, Hentges and Sharpless used 1-2-(2-menthyl)-pyridine as a chiral ligand. However, the diols obtained in this way were of low enantiomeric excess (3-18% ee only). The low ee was attributed to the instability of the osmium tetroxide chiral pyridine complexes. As a result, the naturally occurring cinchona alkaloids quinine and quinidine were derived to dihydroquinine and dihydroquinidine acetate and were selected as chiral... [Pg.221]

In summary, the reaction of osmium tetroxide with alkenes is a reliable and selective transformation. Chiral diamines and cinchona alkakoid are most frequently used as chiral auxiliaries. Complexes derived from osmium tetroxide with diamines do not undergo catalytic turnover, whereas dihydroquinidine and dihydroquinine derivatives have been found to be very effective catalysts for the oxidation of a variety of alkenes. OsC>4 can be used catalytically in the presence of a secondary oxygen donor (e.g., H202, TBHP, A -methylmorpholine-/V-oxide, sodium periodate, 02, sodium hypochlorite, potassium ferricyanide). Furthermore, a remarkable rate enhancement occurs with the addition of a nucleophilic ligand such as pyridine or a tertiary amine. Table 4-11 lists the preferred chiral ligands for the dihydroxylation of a variety of olefins.61 Table 4-12 lists the recommended ligands for each class of olefins. [Pg.224]

The correlation between bulky substituents and stereoselectivity is graphically shown in Figure 3, depicting the possible transition states in the dihydroxylation of a monosubstituted olefin by osmium tetroxide derivatives. This reaction is known to be selective [54], and the selectivity depends on whether the olefin substituent takes a position of type A or B in the transition state. The problem with calculations on a model system where the bulky base is replaced by NH3 is that the positions A and B are completely symmetrical, and thus, they yield the same energy. In other words, the reaction would not be selective with this model system. [Pg.12]

Key words Dihydroxylation, osmium tetraoxide, permanganate, olefin... [Pg.253]

Enantioselective c -dihydroxylation of olefins using osmium catalyst in the presence of cinchona alkaloid ligands. [Pg.536]

SCHEME 178. Osmium-catalyzed catalytic asymmetric dihydroxylation of olefins by H2O2 as terminal oxidant... [Pg.570]

The reaction of an olefin with osmium tetroxide is the most reliable method for cis-dihydroxylation of a double bond, particu-... [Pg.47]

Organometallic compounds asymmetric catalysis, 11, 255 chiral auxiliaries, 266 enantioselectivity, 255 see also specific compounds Organozinc chemistry, 260 amino alcohols, 261, 355 chirality amplification, 273 efficiency origins, 273 ligand acceleration, 260 molecular structures, 276 reaction mechanism, 269 transition state models, 264 turnover-limiting step, 271 Orthohydroxylation, naphthol, 230 Osmium, olefin dihydroxylation, 150 Oxametallacycle intermediates, 150, 152 Oxazaborolidines, 134 Oxazoline, 356 Oxidation amines, 155 olefins, 137, 150 reduction, 5 sulfides, 155 Oxidative addition, 5 amine isomerization, 111 hydrogen molecule, 16 Oxidative dimerization, chiral phenols, 287 Oximes, borane reduction, 135 Oxindole alkylation, 338 Oxiranes, enantioselective synthesis, 137, 289, 326, 333, 349, 361 Oxonium polymerization, 332 Oxo process, 162 Oxovanadium complexes, 220 Oxygenation, C—H bonds, 149... [Pg.196]

Oxidative cleavage of the olefin is accomplished by the method of ijemieux-Johnson.12 The process begins with dihydroxylation of the double bond using osmium tetroxide (see Chapter 3)T leading to a cis diol and osmium(VI) oxide. The added periodate has two functions first, it reoxidizes the osmium(VI) species to os-mium(VIII), but it also cleaves the glycol oxidatively to an aldehyde. This is the reason for utilizing several equivalents of periodate. The periodate is in turn reduced from the +VH to the +V oxidation state. [Pg.64]

The cis dihydroxylation of olefins mediated by osmium tetroxide represents an important general method for olefin functionalization [1,2]. For the purpose of introducing the subject of this chapter, it is useful to divide osmium tetroxide mediated cis dihydroxylations into four categories (1) the stoichiometric dihydroxylation of olefins, in which a stoichiometric equivalent of osmium tetroxide is used for an equivalent of olefin (2) the catalytic dihydroxylation of olefins, in which only a catalytic amount of osmium tetroxide is used relative to the amount of olefin in the reaction (3) the stoichiometric, asymmetric dihydroxylation of olefins, in which osmium tetroxide, an olefinic compound, and a chiral auxiliary are all used in equivalent or stoichiometric amounts and (4) the catalytic, asymmetric dihydroxylation of olefins. The last category is the focus of this chapter. Many features of the reaction are common to all four categories, and are outlined briefly in this introductory section. [Pg.357]

Inclusion in the reaction of a cooxidant serves to return the osmium to the osmium tetroxide level of oxidation and allows for the use of osmium in catalytic amounts. Various cooxidants have been used for this purpose historically, the application of sodium or potassium chlorate in this regard was first reported by Hofmann [7]. Milas and co-workers [8,9] introduced the use of hydrogen peroxide in f-butyl alcohol as an alternative to the metal chlorates. Although catalytic cis dihydroxylation by using perchlorates or hydrogen peroxide usually gives good yields of diols, it is difficult to avoid overoxidation, which with some types of olefins becomes a serious limitation to the method. Superior cooxidants that minimize overoxidation are alkaline t-butylhydroperoxide, introduced by Sharpless and Akashi [10], and tertiary amine oxides such as A - rn e t h y I rn o r p h o I i n e - A - o x i d e (NMO), introduced by VanRheenen, Kelly, and Cha (the Upjohn process) [11], A new, important addition to this list of cooxidants is potassium ferricyanide, introduced by Minato, Yamamoto, and Tsuji in 1990 [12]. [Pg.359]


See other pages where Osmium, olefin dihydroxylation is mentioned: [Pg.117]    [Pg.132]    [Pg.179]    [Pg.676]    [Pg.680]    [Pg.147]    [Pg.150]    [Pg.158]    [Pg.65]    [Pg.231]    [Pg.237]    [Pg.740]    [Pg.355]    [Pg.556]    [Pg.571]    [Pg.556]    [Pg.567]    [Pg.571]    [Pg.47]    [Pg.84]    [Pg.179]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Olefin dihydroxylation

Olefin dihydroxylation osmium-mediated

Olefin osmium-catalyzed dihydroxylation

Osmium dihydroxylation

Osmium dihydroxylation catalysts, olefins

Osmium olefin

© 2024 chempedia.info