Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins amine catalysis

Niobia-supported MTO has been prepared either by the deposition of sublimed MTO onto the support, or by the impregnation of the support by a solution of MTO, and has been well characterised [54]. A large variety of oxidation reactions were efficiently performed with niobia-supported MTO, such as olefin metathesis catalysis [53,54], reactions of ethyl diazoacetate, heteroatom oxidation (amine and phosphine oxidations) and olefin epoxidation with hydrogen peroxide [55] (Scheme 13). [Pg.159]

The first example of acid catalysis appeared in a 1934 patent in which it is claimed that surface catalysts, particularly hydrosilicates of large surface area , known at that time under the trade name Tonsil, Franconit, Granisol, etc. lead to a smooth addition of the olefine to the molecule of the primary aromatic amine . Aniline and cyclohexene were reacted over Tonsil at 230-240°C to give, inter alia, the hydroamination product, N-cyclohexylaniline [47]. [Pg.94]

In 1993, ten challenges faced the catalysis research community. One of these was the anti-Markovnikov addition of water or ammonia to olefins to directly synthesize primary alcohols or amines [323]. Despite some progress, the direct addition of N-H bonds across unsaturated C-C bonds, an apparently simple reaction, stiU remains a challenging fundamental and economic task for the coming century. [Pg.132]

Epoxidation.1 This combination is known to oxidatively cleave double bonds but to effect epoxidation when catalyzed by a metalloporphyrin. Epoxidation of alkenes can also be effected by catalysis with a simple amine. The choice of the amine depends on the olefin. N,N-Dimethylethylenediamine is the most efficient ligand for epoxidation of a 1-alkene (68% yield). Pyridine is the best ligand for epoxidation of stilbene (93%), and imidazole is preferred for epoxidation of QH5CH=CHCH, (71% yield). [Pg.62]

Ruthenium complexes B are stable in the presence of alcohols, amines, or water, even at 60 °C. Olefin metathesis can be realized even in water as solvent, either using ruthenium carbene complexes with water-soluble phosphine ligands [815], or in emulsions. These complexes are also stable in air [584]. No olefination of aldehydes, ketones, or derivatives of carboxylic acids has been observed [582]. During catalysis of olefin metathesis replacement of one phosphine ligand by an olefin can occur [598,809]. [Pg.144]

Aqueous organometalHc catalysis allows the use of NH3-solutions in water for the direct synthesis of amines from olefins in a combined hydroformylation/reductive amination procedure (Scheme 4.19). The hydroformylation step was catalyzed by the proven Rh/TPPTS or Rh/BINAS (44) catalysts, while the iridium complexes formed from the same phosphine ligands and [ IrCl(COD) 2] were found suitable for the hydrogenation of the intermediate imines. With sufficiently high NH3/olefin ratios (8/1) high selectivity towards the formation of primary amines (up to 90 %) could be achieved, while in an excess of olefin the corresponding... [Pg.138]

One of the landmark achievements in the area of enantioselective catalysis has been the development of a large-scale commercial application of the Rh(I)/BINAP-catalyzed asymmetric isomerization of allylic amines to enamines. Unfortunately, methods for the isomerization of other families of olefins have not yet reached a comparable level of sophistication. However, since the early 1990s promising catalyst systems have been described for enantioselective isomerizations of allylic alcohols and aUylic ethers. In view of the utility of catalytic asymmetric olefin isomerization reactions, I have no doubt that the coming years will witness additional exciting progress in the development of highly effective catalysts for these and related substrates. [Pg.85]

Organometallic compounds asymmetric catalysis, 11, 255 chiral auxiliaries, 266 enantioselectivity, 255 see also specific compounds Organozinc chemistry, 260 amino alcohols, 261, 355 chirality amplification, 273 efficiency origins, 273 ligand acceleration, 260 molecular structures, 276 reaction mechanism, 269 transition state models, 264 turnover-limiting step, 271 Orthohydroxylation, naphthol, 230 Osmium, olefin dihydroxylation, 150 Oxametallacycle intermediates, 150, 152 Oxazaborolidines, 134 Oxazoline, 356 Oxidation amines, 155 olefins, 137, 150 reduction, 5 sulfides, 155 Oxidative addition, 5 amine isomerization, 111 hydrogen molecule, 16 Oxidative dimerization, chiral phenols, 287 Oximes, borane reduction, 135 Oxindole alkylation, 338 Oxiranes, enantioselective synthesis, 137, 289, 326, 333, 349, 361 Oxonium polymerization, 332 Oxo process, 162 Oxovanadium complexes, 220 Oxygenation, C—H bonds, 149... [Pg.196]

Phase-transfer catalysis has been developed by the combination of Keggin-type heteropolyanions and quaternary countercations such as tetrahexyl-ammonium or cetylpyridinium ion. The oxidations of alcohols (306), allyl alcohols (307), olefins (308), alkynes (309), /J-unsaturated acids (310), v/ c-diols (311), phenol (312), and amines (313) are the examples. [Pg.205]

In particular, it is not only the cinchona alkaloids that are suitable chiral sources for asymmetric organocatalysis [6], but also the corresponding ammonium salts. Indeed, the latter are particularly useful for chiral PTCs because (1) both pseudo enantiomers of the starting amines are inexpensive and available commercially (2) various quaternary ammonium salts can be easily prepared by the use of alkyl halides in a single step and (3) the olefin and hydroxyl functions are beneficial for further modification of the catalyst. In this chapter, the details of recent progress on asymmetric phase-transfer catalysis are described, with special focus on cinchona-derived ammonium salts, except for asymmetric alkylation in a-amino acid synthesis. [Pg.35]

Enantioselective isomerization of olefins for preparation of optically active olefins has great synthetic potential with a long tradition [1] and the non-stereoselective version is probably the most intensively investigated reaction in transition metal catalysis [2]. In particular, stereoselective hydrogen migration in a-functionalized olefins, for example allyl alcohols and allylamines [3], affording optically active aldehydes, ketones and amines, is part of the standard repertoire of enantioselec-... [Pg.430]

Rh and Ir complexes stabilized by tertiary (chiral) phosphorus ligands are the most active and the most versatile catalysts. Although standard hydrogenations of olefins, ketones and reductive aminations are best performed using heterogeneous catalysts (see above), homogeneous catalysis becomes the method of choice once selectivity is called for. An example is the chemoselective hydrogenation of a,/ -unsaturated aldehydes which is a severe test for the selectivity of catalysts. [Pg.105]


See other pages where Olefins amine catalysis is mentioned: [Pg.217]    [Pg.26]    [Pg.31]    [Pg.21]    [Pg.70]    [Pg.161]    [Pg.95]    [Pg.214]    [Pg.485]    [Pg.146]    [Pg.740]    [Pg.326]    [Pg.398]    [Pg.180]    [Pg.569]    [Pg.166]    [Pg.168]    [Pg.463]    [Pg.569]    [Pg.116]    [Pg.178]    [Pg.469]    [Pg.178]    [Pg.173]    [Pg.579]    [Pg.225]    [Pg.152]    [Pg.306]    [Pg.76]    [Pg.198]    [Pg.209]    [Pg.5282]   


SEARCH



Amination olefins

Amines catalysis

Catalysis olefins

Olefinic amines

© 2024 chempedia.info