Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin enantioselectivity

Over the years, the original dihydroxylation procedure has been modified to operate catalytically, more rapidly, and in better yield. However, the last remaining task, making the dihydroxylation of a prochiral olefin enantioselective without losing all the other desirable features of the reaction, has only recently become a reality. [Pg.676]

Kovacik, I., Wicht, D.K., Grewal, N.S., Glueck, D.S., Incarvito, C.D., Guzei, I.A., and Rheingold, A.L., Pt(Me-Duphos)-catalyzed asymmetric hydrophosphination of activated olefins enantioselective synthesis of chiral phosphines,... [Pg.109]

Enantioselective hydrogenation of prochiral carbonyl compounds with Wilkinson-type catalysts is less successful than the hydrogenation of prochiral olefins. Both rates and enantioselectivities are greatly diminished in the hydrogenation of ketones, compared with olefins. Enantioselectivities only occasionally reach 80% ee, e. g., in the hydrogenation of acetophenone with the in-situ catalyst [Rh(nbd)Cl]2/DIOP, where nbd = norbomadiene [71]. The Ru-based BINAP catalysts improved this situation, by allowing the hydrogenation of a variety of functionalized ketones in enantioselectivities close to 100% ee [72]. [Pg.202]

The first reports of a reaction of an amine with an aldehyde by Schiff [584] led to the establishment of a large class of ligands called Schiff bases. Among the most important of the Schiff bases are the tetradentate salen ligands (N,N -bis(salicy-laldehydo)ethylenediamine), which were studied extensively by Kochi and coworkers, who observed their high potential in chemoselective catalytic epoxidation reactions [585]. The best known method to epoxidize unfunctionalized olefins enantioselectively is the Jacobsen-Katsuki epoxidation reported independently by these researchers in 1990 [220,221]. In this method [515,586-589], optically active Mn salen) compounds are used as catalysts, with usually PhlO or NaOCl as the terminal oxygen sources, and with a O=Mn (salen) species as the active [590,591] oxidant [586-594]. Despite the undisputed synthetic value of this method, the mechanism by which the reaction occurs is still the subject of considerable research [514,586,591]. The subject has been covered in a recent extensive review [595], which also discusses the less-studied Cr (salen) complexes, which can display different, and thus useful selectivity [596]. Computational and H NMR studies have related observed epoxide enantioselectivities... [Pg.66]

Tetrasubstituted enol ethers such as (5.44) undergo dihydroxylation using PYR ligands with good ee, but for other tetrasubstituted olefins, enantioselectivities tend to be reduced and isolated yields also suffer. [Pg.124]

Enantioselective Oxidation of Olefins Enantioselective Epoxidation and Enantioselective Dihydroj lation... [Pg.223]

High enantioselectivities and regioselectivities have been obtained using both mono- and 1,2-disubstituted prochinal olefins employing chiral phosphine phosphite (33,34) modified rhodium catalysts. For example, i7j -2-butene ia the presence of rhodium and (12) (33) gave (3)-2-meth5ibutanal ia an optical yield of 82% at a turnover number of 9.84. ... [Pg.472]

The most common oxidation states and the corresponding electronic configurations of osmium ate +2 and + (t5 ), which ate usually octahedral. Stable oxidation states that have various coordination geometries include —2 and 0 to +8 (P] The single most important appHcation is OsO oxidation of olefins to diols. Enantioselective oxidations have also been demonstrated. [Pg.178]

Efficient enantioselective asymmetric hydrogenation of prochiral ketones and olefins has been accompHshed under mild reaction conditions at low (0.01— 0.001 mol %) catalyst concentrations using rhodium catalysts containing chiral ligands (140,141). Practical synthesis of several optically active natural... [Pg.180]

In 1990, Jacobsen and subsequently Katsuki independently communicated that chiral Mn(III)salen complexes are effective catalysts for the enantioselective epoxidation of unfunctionalized olefins. For the first time, high enantioselectivities were attainable for the epoxidation of unfunctionalized olefins using a readily available and inexpensive chiral catalyst. In addition, the reaction was one of the first transition metal-catalyzed... [Pg.29]

Initial studies on the Jacobsen-Katsuki epoxidation reaction identified conjugated eyelie and acyelic cw-disubstituted olefins as the class of olefins best suited for the epoxidation reaetion. " Indeed a large variety of c/s-disubstituted olefins have been found to undergo epoxidation with a high degree of enantioselectivity. 2,2"-Dimethylehromene derivatives are especially good substrates for the epoxidation reaetion. Table 1.4.1 lists a variety of examples with their corresponding reference. [Pg.36]

The Jacobsen-Katsuki epoxidation reaction has found wide synthetic utility in both academia and industrial settings. As described previously, the majority of olefin classes, when conjugated, undergo Mn(salen)-catalyzed epoxidation in good enantioselectivity. In this section, more specific synthetic utilities are presented. [Pg.38]

Although the limited examples of AE reactions on 2,3Z-substituted allyl alcohols appear to give product epoxides in good enantioselectivity, the highly substituted nature of these olefins can have a deleterious effect on the reactivity. For example, Aiai has shown that the 2,3E-substituted allyl alcohol 30 can be epoxidized with either (-)-DET or (+)-DET in good yields and enantioselectivity. However, the configurational isomer 32 is completely unreactive using (-)-DET, even after a 34 h reaction time. [Pg.57]

Carbenoid complexes with heterocyclic ligands as catalysts in enantioselective cyclopropanation of olefins 97S137. [Pg.219]

A breakthrough in the area of asymmetric epoxidation came at the beginning of the 1990s, when the groups of Jacobsen and Katsuki more or less simultaneously discovered that chiral Mn-salen complexes (15) catalyzed the enantioselective formation of epoxides [71, 72, 73], The discovery that simple achiral Mn-salen complexes could be used as catalysts for olefin epoxidation had already been made... [Pg.204]

Asymmetric epoxidation of olefins with ruthenium catalysts based either on chiral porphyrins or on pyridine-2,6-bisoxazoline (pybox) ligands has been reported (Scheme 6.21). Berkessel et al. reported that catalysts 27 and 28 were efficient catalysts for the enantioselective epoxidation of aryl-substituted olefins (Table 6.10) [139]. Enantioselectivities of up to 83% were obtained in the epoxidation of 1,2-dihydronaphthalene with catalyst 28 and 2,6-DCPNO. Simple olefins such as oct-l-ene reacted poorly and gave epoxides with low enantioselectivity. The use of pybox ligands in ruthenium-catalyzed asymmetric epoxidations was first reported by Nishiyama et al., who used catalyst 30 in combination with iodosyl benzene, bisacetoxyiodo benzene [PhI(OAc)2], or TBHP for the oxidation of trons-stilbene [140], In their best result, with PhI(OAc)2 as oxidant, they obtained trons-stilbene oxide in 80% yield and with 63% ee. More recently, Beller and coworkers have reexamined this catalytic system, finding that asymmetric epoxidations could be perfonned with ruthenium catalysts 29 and 30 and 30% aqueous hydrogen peroxide (Table 6.11) [141]. Development of the pybox ligand provided ruthenium complex 31, which turned out to be the most efficient catalyst for asymmetric... [Pg.222]

Ten years after Sharpless s discovery of the asymmetric epoxidation of allylic alcohols, Jacobsen and Katsuki independently reported asymmetric epoxidations of unfunctionalized olefins by use of chiral Mn-salen catalysts such as 9 (Scheme 9.3) [14, 15]. The reaction works best on (Z)-disubstituted alkenes, although several tri-and tetrasubstituted olefins have been successfully epoxidized [16]. The reaction often requires ligand optimization for each substrate for high enantioselectivity to be achieved. [Pg.318]

The reactions of allylboronates 1 (R = H or CH3) may proceed either by way of transition state 3, in which the a-substituent X adopts an axial position, or 4 in which X occupies an equatorial position. These two pathways are easily distinguished since 3 provides 7 with a Z-olefin, whereas 4 provides 8 with an E-olefinic linkage. There is also a second fundamental stereochemical difference between these two transition states 7 and 8 are heterochirally related from reactions in which 1 is not racemic. That is, 7 and 8 arc enantiomers once the stereochemistry-associated with the double bond is destroyed. Thus, the selectivity for reaction by way of 3 in preference to 4, or via 6 in preference to 5 in reactions of a-subsliluted (Z)-2-butenylboronate 2, is an important factor that determines the suitability of these reagents for applications in enantioselective or acyclic diastereoselective synthesis. [Pg.320]

We will focus on the development of ruthenium-based metathesis precatalysts with enhanced activity and applications to the metathesis of alkenes with nonstandard electronic properties. In the class of molybdenum complexes [7a,g,h] recent research was mainly directed to the development of homochi-ral precatalysts for enantioselective olefin metathesis. This aspect has recently been covered by Schrock and Hoveyda in a short review and will not be discussed here [8h]. In addition, several important special topics have recently been addressed by excellent reviews, e.g., the synthesis of medium-sized rings by RCM [8a], applications of olefin metathesis to carbohydrate chemistry [8b], cross metathesis [8c,d],enyne metathesis [8e,f], ring-rearrangement metathesis [8g], enantioselective metathesis [8h], and applications of metathesis in polymer chemistry (ADMET,ROMP) [8i,j]. Application of olefin metathesis to the total synthesis of complex natural products is covered in the contribution by Mulzer et al. in this volume. [Pg.228]

In Ghosh s enantioselective total synthesis of the cytotoxic marine macrolide (+)-amphidinolide T1 (318) [143], the C1-C10 fragment 317 was constructed by CM of subunits 315 and 316 (Scheme 62). The reaction mediated by catalyst C (5 mol%) afforded in the first cycle an inconsequential 1 1 mixture of (E/Z)-isomeric CM products 317 in 60% yield, along with the homodimers of 315 and 316. The self-coupling products were separated by chromatography and exposed to a second metathesis reaction to provide olefins 317 in additional 36% yield [144]. [Pg.332]

It should also be noted that the 5-exo-trig cyclization of achiral olefinic organolithiums has been found to proceed enantioselectively when conducted in the presence of a chiral ligand that serves to render the lithium atom stereogenic. Thus, for example, R) 1 -allyl-3-methylindolinc has been prepared in 86 % ee by cyclization of an achiral aryllithium in the presence of an equivalent of (-)-sparteine.15... [Pg.67]


See other pages where Olefin enantioselectivity is mentioned: [Pg.538]    [Pg.12]    [Pg.538]    [Pg.12]    [Pg.178]    [Pg.179]    [Pg.181]    [Pg.439]    [Pg.171]    [Pg.81]    [Pg.29]    [Pg.35]    [Pg.295]    [Pg.345]    [Pg.687]    [Pg.696]    [Pg.195]    [Pg.205]    [Pg.205]    [Pg.206]    [Pg.223]    [Pg.225]    [Pg.316]    [Pg.133]    [Pg.56]    [Pg.43]    [Pg.46]    [Pg.110]   
See also in sourсe #XX -- [ Pg.178 ]




SEARCH



Catalytic Enantioselective Olefin Metathesis and Natural Product Synthesis

Catalytic enantioselective olefin hydrogenation

Enantioselection simple olefins

Enantioselective Aminohydroxylation of Olefins

Enantioselective Dihydroxylations of Olefins

Enantioselective Isomerization of Olefins

Enantioselective epoxidation of olefins

Enantioselective hydroformylation olefins

Enantioselective hydrogenations of prochiral olefins

Enantioselective olefin isomerizations

Enantioselective olefin metathesis

Olefin enantioselective aminohydroxylation

Olefin enantioselective dihydroxylation

Olefin hydrogenation enantioselective

Olefin metal-mediated enantioselective

Olefins enantioselective epoxidation

Olefins enantioselective synthesis

© 2024 chempedia.info