Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin complexes, bonding

Ozonation ofAlkenes. The most common ozone reaction involves the cleavage of olefinic carbon—carbon double bonds. Electrophilic attack by ozone on carbon—carbon double bonds is concerted and stereospecific (54). The modified three-step Criegee mechanism involves a 1,3-dipolar cycloaddition of ozone to an olefinic double bond via a transitory TT-complex (3) to form an initial unstable ozonide, a 1,2,3-trioxolane or molozonide (4), where R is hydrogen or alkyl. The molozonide rearranges via a 1,3-cycloreversion to a carbonyl fragment (5) and a peroxidic dipolar ion or zwitterion (6). [Pg.493]

Olefin Complexes. Silver ion forms complexes with olefins and many aromatic compounds. As a general rule, the stabihty of olefin complexes decreases as alkyl groups are substituted for the hydrogen bonded to the ethylene carbon atoms (19). [Pg.90]

The following compounds have been obtained from thiete 1,1-dioxide Substituted cycloheptatrienes, benzyl o-toluenethiosulfinate, pyrazoles, - naphthothiete 1,1-dioxides, and 3-subst1tuted thietane 1,1-dioxides.It is a dienophile in Diels-Alder reactions and undergoes cycloadditions with enamines, dienamines, and ynamines. Thiete 1,1-dioxide is a source of the novel intermediate, vinylsulfene (CH2=CHCH=SQ2). which undergoes cyclo-additions to strained olefinic double bonds, reacts with phenol to give allyl sulfonate derivatives or cyclizes unimolecularly to give an unsaturated sultene. - Platinum and iron complexes of thiete 1,1-dioxide have been reported. [Pg.215]

Ferrocen-l,l -diylbismetallacycles are conceptually attractive for the development of bimetal-catalyzed processes for one particular reason the distance between the reactive centers in a coordinated electrophile and a coordinated nucleophile is self-adjustable for specific tasks, because the activation energy for Cp ligand rotation is very low. In 2008, Peters and Jautze reported the application of the bis-palladacycle complex 56a to the enantioselective conjugate addition of a-cyanoacetates to enones (Fig. 31) [74—76] based on the idea that a soft bimetallic complex capable of simultaneously activating both Michael donor and acceptor would not only lead to superior catalytic activity, but also to an enhanced level of stereocontrol due to a highly organized transition state [77]. An a-cyanoacetate should be activated by enolization promoted by coordination of the nitrile moiety to one Pd(II)-center, while the enone should be activated as an electrophile by coordination of the olefinic double bond to the carbophilic Lewis acid [78],... [Pg.159]

Nickel(O) reacts with the olefin to form a nickel(0)-olefin complex, which can also coordinate the alkyl aluminum compound via a multicenter bond between the nickel, the aluminum and the a carbon atom of the trialkylaluminum. In a concerted reaction the aluminum and the hydride are transferred to the olefin. In this mechanistic hypothesis the nickel thus mostly serves as a template to bring the olefin and the aluminum compound into close proximity. No free Al-H or Ni-H species is ever formed in the course of the reaction. The adduct of an amine-stabihzed dimethylaluminum hydride and (cyclododecatriene)nickel, whose structure was determined by X-ray crystallography, was considered to serve as a model for this type of mechanism since it shows the hydride bridging the aluminum and alkene-coordinated nickel center [31]. [Pg.52]

In the case of r)2-coordination of the exocyclic C=C bond, it becomes substantially elongated compared with the double bond of free alkenes, as a result of back donation from the metal to the 7t orbitals of the double bond. For instance, in complex 17b the coordinated bond length is 1.437 A (see Fig. 3.2).18 This is also reflected in the loss of planarity around the quaternary exocyclic carbon, the methylenic carbon being bent out of the ring plane by 10.78°.18 Similar structural features were also observed with other P2Pd conjugated olefin complexes.39... [Pg.81]

Addition of carbethoxynitrenes to olefinic double bonds occurs readily. Addition of both the singlet and the triplet species can take place, the former stereospecifically, the latter not 49>. Additions of sulphonyl nitrenes to double bonds have not been demonstrated except in two instances in which metals were present. The reason is that either addition of the starting sulphonyl azide to the double bond occurs to give a triazoline that loses nitrogen and yields the same aziridine as would have been obtained by the direct addition of the nitrene to the olefin, or the double bond participates in the nitrogen elimination and a free nitrene is never involved 68>. The copper-catalyzed decomposition of benzenesulphonyl azide in cyclohexene did give the aziridine 56 (15%), which was formulated as an attack by the sulphonyl nitrene-copper complex on the double bond 24>. [Pg.32]

In order to rationalize the catalyst-dependent selectivity of cyclopropanation reaction with respect to the alkene, the ability of a transition metal for olefin coordination has been considered to be a key factor (see Sect. 2.2.1 and 2.2.2). It was proposed that palladium and certain copper catalysts promote cyclopropanation through intramolecular carbene transfer from a metal carbene to an alkene molecule coordinated to the same metal atom25,64. The preferential cyclopropanation of terminal olefins and the less hindered double bond in dienes spoke in favor of metal-olefin coordination. Furthermore, stable and metastable metal-carbene-olefin complexes are known, some of which undergo intramolecular cyclopropane formation, e.g. 426 - 427 415). [Pg.243]

The shift in the C=C frequency, vi, for adsorbed ethylene relative to that in the gas phase is 23 cm-1. This is much greater than the 2 cm-1 shift that is observed on liquefaction (42) but is less than that found for complexes of silver salts (44) (about 40 cm-1) or platinum complexes (48) (105 cm-1). Often there is a correlation of the enthalpy of formation of complexes of ethylene to this frequency shift (44, 45). If we use the curve showing this correlation for heat of adsorption of ethylene on various molecular sieves (45), we find that a shift of 23 cm-1 should correspond to a heat of adsorption of 13.8 kcal. This value is in excellent agreement with the value of 14 kcal obtained for isosteric heats at low coverage. Thus, this comparison reinforces the conclusion that ethylene adsorbed on zinc oxide is best characterized as an olefin w-bonded to the surface, i.e., a surface w-complex. [Pg.22]

Organoiron complexes (7) are converted in high yield into ammonium salts (8) these in turn undergo oxidatively induced ligand transfer and cyclization to give azetidinones (9) in moderate yields (Scheme 9). Formation of the trans product (9b) indicates a stereochemical sequence of trans addition to the olefin complex followed by carboxamidation with retention of configuration at the C—Fe bond. [Pg.327]

The most famous mechanism, namely Cossets mechanism, in which the alkene inserts itself directly into the metal-carbon bond (Eq. 5), has been proposed, based on the kinetic study [134-136], This mechanism involves the intermediacy of ethylene coordinated to a metal-alkyl center and the following insertion of ethylene into the metal-carbon bond via a four-centered transition state. The olefin coordination to such a catalytically active metal center in this intermediate must be weak so that the olefin can readily insert itself into the M-C bond without forming any meta-stable intermediate. Similar alkyl-olefin complexes such as Cp2NbR( /2-ethylene) have been easily isolated and found not to be the active catalyst precursor of polymerization [31-33, 137]. In support of this, theoretical calculations recently showed the presence of a weakly ethylene-coordinated intermediate (vide infra) [12,13]. The stereochemistry of ethylene insertion was definitely shown to be cis by the evidence that the polymerization of cis- and trans-dideutero-ethylene afforded stereoselectively deuterated polyethylenes [138]. [Pg.19]

In contrast, methyl cyclopropenone is reported283) to react with the Pt-olefin complex 455 at low temperature with replacement of the olefin ligand. In the resulting complex 456 the cyclopropenone interacts with the central atom via the C /C2 double bond according to spectroscopic evidence284). At elevated temperatures a metal insertion to the C1<2)/C3 bond occurs giving rise to 457. Pt complexes of a similiar type were obtained from dimethyl and diphenyl cyclopropenone on reaction with 455 and their structures were established by X-ray analysis285). [Pg.93]

In our laboratory we have examined the reactivity pattern of [0s3(y-H)2(C0)10], an unsaturated cluster which can be represented as possessing an osmium-osmium double bond in its classical valence bond representation. We find (2,3) that this compound undergoes a number of reactions with metal carbonyls which in some cases can be formulated as proceeding through intermediates analogous to metal olefin complexes ... [Pg.383]

The thermodynamically favorable bis(r 3),A-cis/trans configuration 7b of the [Nin(dodecatrienediyl)] complex also represents the catalytically active species for reductive elimination. The new C-C a-bond is preferably established between the terminal unsubstituted carbons on two r 3-allylic groups (Fig. 9) giving rise to the formal 16e [Ni°(CDT)] product 8b, where CDT is coordinated to nickel by its three olefinic double bonds. [Pg.194]

In most palladium-catalyzed oxidations of unsaturated hydrocarbons the reaction begins with a coordination of the double bond to palladium(II). In such palladium(II) olefin complexes (1), which are square planar d8 complexes, the double bond is activated towards further reactions, in particular towards nucleophilic attack. A fairly strong interaction between a vacant orbital on palladium and the filled --orbital on the alkene, together with only a weak interaction between a filled metal d-orbital and the olefin ji -orbital (back donation), leads to an electrophilic activation of the alkene9. [Pg.654]

This observation may well explain the considerable difference between metal-olefin and metal-acetylene chemistry observed for the trinuclear metal carbonyl compounds of this group. As with iron, ruthenium and osmium have an extensive and rich chemistry, with acetylenic complexes involving in many instances polymerization reactions, and, as noted above for both ruthenium and osmium trinuclear carbonyl derivatives, olefin addition normally occurs with interaction at one olefin center. The main metal-ligand framework is often the same for both acetylene and olefin adducts, and differs in that, for the olefin complexes, two metal-hydrogen bonds are formed by transfer of hydrogen from the olefin. The steric requirements of these two edgebridging hydrogen atoms appear to be considerable and may reduce the tendency for the addition of the second olefin molecule to the metal cluster unit and hence restrict the equivalent chemistry to that observed for the acetylene derivatives. [Pg.290]


See other pages where Olefin complexes, bonding is mentioned: [Pg.138]    [Pg.138]    [Pg.223]    [Pg.286]    [Pg.287]    [Pg.1200]    [Pg.137]    [Pg.567]    [Pg.109]    [Pg.442]    [Pg.46]    [Pg.10]    [Pg.18]    [Pg.34]    [Pg.132]    [Pg.34]    [Pg.114]    [Pg.183]    [Pg.756]    [Pg.167]    [Pg.189]    [Pg.174]    [Pg.188]    [Pg.113]    [Pg.331]    [Pg.654]    [Pg.221]    [Pg.334]    [Pg.343]    [Pg.365]    [Pg.370]    [Pg.282]    [Pg.323]   
See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 ]

See also in sourсe #XX -- [ Pg.21 , Pg.47 ]

See also in sourсe #XX -- [ Pg.327 , Pg.328 , Pg.329 , Pg.330 ]




SEARCH



Bond olefinic

Olefin complexation

Olefin complexes

Olefines, complexes

© 2024 chempedia.info