Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of the trivalent

Chemical Properties. Although the chemical properties of the trivalent lanthanides are quite similar, some differences occur as a consequence of the lanthanide contraction (see Table 3). The chemical properties of yttrium are very similar too, on account of its external electronic stmcture and ionic radius. Yttrium and the lanthanides are typical hard acids, and bind preferably with hard bases such as oxygen-based ligands. Nevertheless they also bind with soft bases, typicaUy sulfur and nitrogen-based ligands in the absence of hard base ligands. [Pg.540]

In aqueous solutions, trivalent lanthanides ate very stable whereas only a limited number of lanthanides exhibit a stable divalent or tetravalent state. Practically, only Ce and Eu " exist in aqueous solutions. The properties of these cations ate very different from the properties of the trivalent lanthanides. For example, Ce" " is mote acidic and cetium(IV) hydroxide precipitates at pH 1. Eu " is less acidic and eutopium(II) hydroxide does not precipitate at pH 7—8.5, whereas trivalent lanthanide hydroxides do. Some industrial separations ate based on these phenomena. [Pg.541]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

When sufficient hydroxide is added to an aqueous solution of the trivalent chromium ion, the precipitation of a hydrous chromium (ITT) oxide,... [Pg.135]

The C-NMR chemical shift of the trivalent carbon is a sensitive indicator of carbocation structure. Given below are the data for three carbocations with varying aryl substituents. Generally, the larger the chemical shift, the lower is the electron density at the carbon atom. [Pg.346]

In this paper Speziale and Smith 109) described experiments which led them to modify the mechanism proposed earlier 108) for the reaction of trivalent phosphorus compounds with haloamides. The first step is considered to be attack of the trivalent phosphorus compound on a chlorine atom of the halo amide (132) to produce a resonance-stabilized enolate ion (133). This is reasonable since under conditions where the trichloroamide... [Pg.85]

In contrast to the situation observed in the trivalent lanthanide and actinide sulfates, the enthalpies and entropies of complexation for the 1 1 complexes are not constant across this series of tetravalent actinide sulfates. In order to compare these results, the thermodynamic parameters for the reaction between the tetravalent actinide ions and HSOIJ were corrected for the ionization of HSOi as was done above in the discussion of the trivalent complexes. The corrected results are tabulated in Table V. The enthalpies are found to vary from +9.8 to+41.7 kj/m and the entropies from +101 to +213 J/m°K. Both the enthalpy and entropy increase from ll1 "1" to Pu1 with the ThSOfj parameters being similar to those of NpS0 +. Complex stability is derived from a very favorable entropy contribution implying (not surprisingly) that these complexes are inner sphere in nature. [Pg.261]

In the isoelectronic zirconates this absorption band is not observed [17]. The spectral position of these MMCT bands has been interpreted in terms of the relevant ionization potentials [17], an approach which runs parallel with the Hush theory [10]. The fact that the MMCT transition is at higher energy in the Cr(III)-Ti(IV) pair than in the Fe(II)-Ti(IV) pair is due to the more than 10 eV higher ionization potentials of the trivalent transition-metal ions compared to the divalent transition-metal ions. The fact that the MMCT absorption band is not observed in the zirconates in contradiction to the titanates is due to the higher ionization potential of the Ti(III) species ... [Pg.157]

Figure 24. Lattice strain model applied to zircon-melt partition coefficients from Hinton et al. (written comm.) for a zircon phenocryst in peralkaline rhyolite SMN59 from Kenya. Ionic radii are for Vlll-fold coordination (Shannon 1976). The curves are fits to Equation (1) at an estimated eraption temperature of 700°C (Scaillet and Macdonald 2001). Note the excellent fit of the trivalent lanAanides, with the exception of Ce, whose elevated partition coefficient is due to the presence of both Ce and Ce" in the melt, with the latter having a much higher partition coefficient into zircon. The 4+ parabola cradely fits the data from Dj, and Dy, through Dzi to Dih, but does not reproduce the observed DuIDjh ratio. We speculate that this is due to melt compositional effects on Dzt and (Linnen and Keppler 2002), and possibly other 4+ cations, in very silicic melts. Because of its Vlll-fold ionic radius of 0.91 A (vertical line), Dpa is likely to be at least as high as Dwh, and probably considerably higher. Figure 24. Lattice strain model applied to zircon-melt partition coefficients from Hinton et al. (written comm.) for a zircon phenocryst in peralkaline rhyolite SMN59 from Kenya. Ionic radii are for Vlll-fold coordination (Shannon 1976). The curves are fits to Equation (1) at an estimated eraption temperature of 700°C (Scaillet and Macdonald 2001). Note the excellent fit of the trivalent lanAanides, with the exception of Ce, whose elevated partition coefficient is due to the presence of both Ce and Ce" in the melt, with the latter having a much higher partition coefficient into zircon. The 4+ parabola cradely fits the data from Dj, and Dy, through Dzi to Dih, but does not reproduce the observed DuIDjh ratio. We speculate that this is due to melt compositional effects on Dzt and (Linnen and Keppler 2002), and possibly other 4+ cations, in very silicic melts. Because of its Vlll-fold ionic radius of 0.91 A (vertical line), Dpa is likely to be at least as high as Dwh, and probably considerably higher.
In an interesting variation, aerial oxidative dehydrogenation of the trivalent octamethyl diene complex (57) generates the divalent tetraimine complex (58).301... [Pg.32]

Alkyl Co oxime complexes have been used as chain transfer catalysts in free radical polymerizations.866,867 Regioselective hydronitrosation of styrene (with NO in DMF) to PhCMe=NOH is catalyzed by Co(dmg)2(py)Cl in 83% yield.868,869 Catalytic amounts of the trivalent Co(dmg2tn)I2 (192) (X = I) generate alkyl radicals from their corresponding bromides under mild reaction conditions, allowing the selective preparation of either saturated or unsaturated radical cyclization products.870... [Pg.73]

Other companies (e.g., Hoechst) have developed a slightly different process in which the water content is low in order to save CO feedstock. In the absence of water it turned out that the catalyst precipitates. Clearly, at low water concentrations the reduction of rhodium(III) back to rhodium(I) is much slower, but the formation of the trivalent rhodium species is reduced in the first place, because the HI content decreases with the water concentration. The water content is kept low by adding part of the methanol in the form of methyl acetate. Indeed, the shift reaction is now suppressed. Stabilization of the rhodium species and lowering of the HI content can be achieved by the addition of iodide salts. High reaction rates and low catalyst usage can be achieved at low reactor water concentration by the introduction of tertiary phosphine oxide additives.8 The kinetics of the title reaction with respect to [MeOH] change if H20 is used as a solvent instead of AcOH.9 Kinetic data for the Rh-catalyzed carbonylation of methanol have been critically analyzed. The discrepancy between the reaction rate constants is due to ignoring the effect of vapor-liquid equilibrium of the iodide promoter.10... [Pg.144]

The other major approach toward overcoming the "alkyl transfer" difficulty of the Abramov reaction involves the use of silyl esters of the trivalent phosphorus acids. Unlike carbon, silicon does not have the stereochemical restraints associated with ordinary alkyl groups for intramolecular transfer.211 The preparation of mixed alkyl—silyl esters of trivalent phosphorus acids paved the way for the Abramov reaction to be of general utility.204 208 212 An example is shown in Equation 3.14. [Pg.56]

CoO and NiO all take the NaCl-type structure and the difference in nonstoichiometry relates to the relative stability of the formal di- and trivalent oxidation states. The stability of the trivalent state and the degree of non-stoichiometry decreases from Fe3+ to Ni2+. Hence the non-stoichiometric nature of Fcj yO is made possible by the relatively high stability of Fe3+ that is reflected in the fact that Fe2C>3 is a stable compound in the Fe-0 system, whereas M2O3 is not in the Ni-O system. This relative stability of the different oxidation states is also reflected in Figure 7.11(c). [Pg.222]

The justification for adding twice the molar concentration of the trivalent oxides to the Si02 figure is that they can enter the network and also immobilize the alkali cations, which is why they are also deducted from the R20 value. [Pg.174]

In order to modify the anomeric reactivity, also the anomeric carbon as been replaced with a different atom. The most studied case is that of the so defined 1-azasugars, in which a nitrogen is located at the anomeric position.81 Such compounds, like imino sugars to which are strictly related, are able to inhibit glycosidases. Interestingly, the presence of the trivalent... [Pg.282]


See other pages where Of the trivalent is mentioned: [Pg.540]    [Pg.540]    [Pg.87]    [Pg.290]    [Pg.527]    [Pg.201]    [Pg.332]    [Pg.367]    [Pg.135]    [Pg.142]    [Pg.87]    [Pg.159]    [Pg.29]    [Pg.38]    [Pg.40]    [Pg.249]    [Pg.130]    [Pg.134]    [Pg.115]    [Pg.71]    [Pg.77]    [Pg.98]    [Pg.102]    [Pg.255]    [Pg.378]    [Pg.848]    [Pg.243]    [Pg.179]    [Pg.50]    [Pg.55]    [Pg.724]    [Pg.64]    [Pg.45]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Complexes of the trivalent actinides

Substitution on Complexes of the Trivalent Lanthanide Ions

Substitution on Complexes of the Trivalent Main Group Metal Ions

The oxyhalides of trivalent Sb

Trivalent

© 2024 chempedia.info