Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of secondary alcohols to ketones

A white solid, m.p. 178 C. Primarily of interest as a brominaling agent which will replace activated hydrogen atoms in benzylic or allylic positions, and also those on a carbon atom a to a carbonyl group. Activating influences can produce nuclear substitution in a benzene ring and certain heterocyclic compounds also used in the oxidation of secondary alcohols to ketones. [Pg.69]

Selective oxidation of secondary alcohols to ketones is usually performed with CrOj/HjSO, I I in acetone (Jones reagent) or with CrOjPyj (Collin s reagent) in the presence of acid-sensitive groups (H.G. Bosche, 1975 C. Djerassi, 1956 W.S. Allen, 1954). As mentioned above, a,)S-unsaturated secondary alcohols are selectively oxidized by MnOj (D.G. Lee, 1969 D. Arndt, 1975) or by DDQ (D. Walker, 1967 H.H. Stechl, 1975). [Pg.135]

Alcohols are oxidized slowly with PdCh. Oxidation of secondary alcohols to ketones is carried out with a catalytic amount of PdCh under an oxygen atmo-sphere[73.74]. Also, selective oxidation of the allylic alcohol 571 without attacking saturated alcohols is possible with a stoichiometric amount of PdfOAc) in aqueous DMF (1% H OifSll],... [Pg.105]

Oppenauer reaction is oxidation of secondary alcohols to ketones using aluminium t-butoxide... [Pg.256]

Oxidation of secondary alcohols to ketones (Section 15.10) Many oxidizing agents are available for converting secondary alcohols to ketones. PDC or PCC may be used, as well as other Cr(VI)-based agents such as chromic acid or potassium dichromate and sulfuric acid. [Pg.710]

TS-1 is a material that perfectly fits the definition of single-site catalyst discussed in the previous Section. It is an active and selective catalyst in a number of low-temperature oxidation reactions with aqueous H2O2 as the oxidant. Such reactions include phenol hydroxylation [9,17], olefin epoxida-tion [9,10,14,17,40], alkane oxidation [11,17,20], oxidation of ammonia to hydroxylamine [14,17,18], cyclohexanone ammoximation [8,17,18,41], conversion of secondary amines to dialkylhydroxylamines [8,17], and conversion of secondary alcohols to ketones [9,17], (see Fig. 1). Few oxidation reactions with ozone and oxygen as oxidants have been investigated. [Pg.40]

Secondary alcohol oxidases catalyze the oxidation of secondary alcohols to ketones using molecular oxygen as oxidant. A secondary alcohol oxidase from polyvinyl alcohol-degrading bacterium Pseudomonas vesicularis var. povalolyticus PH exhibited activity toward several... [Pg.159]

The nickel hydroxide electrode resembles in its applications and selectivity the chemical oxidant nickel peroxide. The nickel hydroxide electrode is, however, cheaper, easy to use and in scale-up, and produces no second streams/ waste- and by-products [196], Nickelhydroxide electrode has been applied to the oxidation of primary alcohols to acids or aldehydes, of secondary alcohols to ketones, as well as in the selective oxidation of steroid alcohols, cleavage of vicinal diols, in the oxidation of y-ketocarboxylic acids, of primary amines to nitriles, of 2,6-di-tert-butylphenol to 2,2, 6,6 -tetra-rert-butyldiphenoquinone, of 2-(benzylideneamino)-phenols to 2-phenyloxazols, of 1,1-dialkylhydrazines to tetraalkyltetrazenes. For details the reader is referred to Ref. [195]. [Pg.173]

N-bromosuccinimide is a selective oxidising agent and oxidises OH groups without disturbing other oxidisable groups. Thus while it does not oxidise aliphatic primary alcohols in presence of water it is highly selective for the oxidation of secondary alcohols to ketones. [Pg.306]

Thioanisolc. A system utilizing thio-anisole as an organic mediator was developed for the oxidation of secondary alcohols to ketones (Fig. 5 2-octanol to 2-octanone 99%, menthol to menthone 92%, cyclododecanol to cyclododecanone 75%) [43]. The use of 2,2,2-trifluoroethanol as a solvent in the mediatory system improved the yields [44]. [Pg.179]

The oxidative dehydrogenation of secondary alcohols to ketones on iridium at 130°C has been measured by Le Nhu Thanh and Kraus (i-Zi), and the rates have been correlated by the Taft equation [series 112, four reactants of the structure R CH(OH)CH3, slope 4.7]. [Pg.186]

Hydrogen transfer reactions from an alcohol to a ketone (typically acetone) to produce a carbonyl compound (the so-caUed Oppenauer-type oxidation ) can be performed under mild and low-toxicity conditions, and with high selectivity when compared to conventional methods for oxidation using chromium and manganese reagents. While the traditional Oppenauer oxidation using aluminum alkoxide is accompanied by various side reactions, several transition-metal-catalyzed Oppenauer-type oxidations have been reported recently [27-29]. However, most of these are limited to the oxidation of secondary alcohols to ketones. [Pg.108]

P. E. Morris, D. E. Kiely, Ruthenium Tetraoxide Phase-Transfer-Promoted Oxidation of Secondary alcohols to Ketones, J. Org. Chem. 52 (1987) 1149-1152. [Pg.366]

Nickel(lll) oxide, prepared from a nickel(ii) salt and sodium hypochlorite, is used for the oxidation of alkanols in aqueous alkali [46]. Residual nickel(Ii) oxide can be re-activated by reaction with sodium hypochlorite. Nickel oxides have also long been used in the manufacture of the positive pole in the Edison nickel-iron rechargeable battery, now largely superseded by die lead-acid accumulator, and in the Jungner nickel-cadmium batteries used as button cells for calculators [47]. Here, prepared nickel oxide is pressed into a holding plate of perforated nickel. Such prepared plates of nickel(lli) oxide have been proposed as reagent for the oxidation, in alkaline solution, of secondary alcohols to ketones and primary alcohols to carboxylic acids [48]. Used plates can be regenerated by anodic oxidation. [Pg.269]

The nickel oxide electrode is generally useful for the oxidation of alkanols in a basic electrolyte (Tables 8.3 and 8.4). Reactions are generally carrried out in an undivided cell at constant current and with a stainless steel cathode. Water-soluble primary alcohols give the carboxylic acid in good yields. Water insoluble alcohols are oxidised to the carboxylic acid as an emulsion. Short chain primary alcohols are effectively oxidised at room temperature whereas around 70 is required for the oxidation of long chain or branched chain primary alcohols. The oxidation of secondary alcohols to ketones is carried out in 50 % tert-butanol as solvent [59], y-Lactones, such as 10, can be oxidised to the ketoacid in aqueous sodium hydroxide [59]. [Pg.271]

There are some reports of kinetic investigations of Ru-catalysed oxidations in which the nature of the active catalyst or catalyst precursor is unclear but which may be predominantly [RuO ] . Two papers used electronic or Raman spectroscopy to identify such species [212], [222]. Examples in which [RuO ]" has been shown to be the active species or catalyst precursor in the oxidation of secondary alcohols to ketones include... [Pg.39]

The system (4- Bu-pyH)3[Ru(0)3Cl ]/NM0/PMS/CH2Cl3 catalysed the oxidation of primary alcohols to aldehydes and of secondary alcohols to ketones like TRAP (Tables 2.1 and 2.2), such oxidations did not attack double bonds. As stoich. trans-(PPh )2[Ru(0)2Cl ] -/CH3CN it is a two electron oxidant for alcohols [561]. For tran -[Ru(0)2Cy - in solution the effective oxidant or oxidant precursor is [Ru(0)2Cl3]", and this species is coordinatively unsaturated. That this is the case is suggested by the observation that addition of extra Cl" (as (PPh )Cl) to the green [Ru(0)2Cl3]" in solution (Eq. 1.4) generating the red franx-[Ru(0)3Cl ] ", a markedly less effective catalytic oxidant for alcohols than [Ru(0) Cl ]" [561]. [Pg.50]

Abstract This is one of the most important classes of oxidation effected by Ru complexes, particnlarly by RnO, [RuO ] , [RnO ] and RuCljCPPhj), though in fact most Ru oxidants effect these transformations. The chapter covers oxidation of primary alcohols to aldehydes (section 2.1), and to carboxylic acids (2.2), and of secondary alcohols to ketones (2.3). Oxidation of primary and secondary alcohol functionalities in carbohydrates (sugars) is dealt with in section 2.4, then oxidation of diols and polyols to lactones and acids (2.5). Finally there is a short section on miscellaneous alcohol oxidations in section 2.6. [Pg.135]

Por other examples of secondary alcohol to ketone oxidations in Chapter 1 cf. 2.3.6. [Pg.146]

Most Ru-catalysed oxidations of secondary alcohol to ketone steps involve TPAP one that does not is a stage in the industrial preparation of the inhibitor thrombin, which used RuClj/aq. Na(Br03)/CH3CN [166],... [Pg.146]

Several syntheses of natural products and pharmaceuticals involving the conversion of secondary alcohols to ketones using TPAP/NMO/PMS/CH Clj or TPAP/NMO/ PMS/CH3CI3 have been reported. A key early example using TPAP/NMO/PMS/ CH3CI3 for conversion of a secondary alcohol to a ketone intermediate was for the anti-parasitic avermectin-Bla (Fig. 2.6 cf. 1.11) [81,167],... [Pg.146]

A new, selective and efficient alternative method has been developed for the oxidation of secondary alcohols to ketones in moderate to good yields in hydrated media. Table 5.3 shows different substrates that can be selectively oxidized under the reaction conditions. [Pg.190]


See other pages where Of secondary alcohols to ketones is mentioned: [Pg.24]    [Pg.5]    [Pg.241]    [Pg.243]    [Pg.243]    [Pg.95]    [Pg.471]    [Pg.164]    [Pg.247]    [Pg.187]    [Pg.138]    [Pg.743]    [Pg.794]    [Pg.272]    [Pg.14]    [Pg.34]    [Pg.36]    [Pg.40]    [Pg.45]    [Pg.52]    [Pg.55]    [Pg.139]    [Pg.143]    [Pg.145]    [Pg.145]    [Pg.496]    [Pg.290]   
See also in sourсe #XX -- [ Pg.135 , Pg.139 , Pg.147 , Pg.148 ]




SEARCH



Alcohols secondary alcohol

Alcohols to ketones

Ketones alcohols

Secondary ketones

© 2024 chempedia.info