Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Odd numbers

Electrons, protons and neutrons and all other particles that have s = are known as fennions. Other particles are restricted to s = 0 or 1 and are known as bosons. There are thus profound differences in the quantum-mechanical properties of fennions and bosons, which have important implications in fields ranging from statistical mechanics to spectroscopic selection mles. It can be shown that the spin quantum number S associated with an even number of fennions must be integral, while that for an odd number of them must be half-integral. The resulting composite particles behave collectively like bosons and fennions, respectively, so the wavefunction synnnetry properties associated with bosons can be relevant in chemical physics. One prominent example is the treatment of nuclei, which are typically considered as composite particles rather than interacting protons and neutrons. Nuclei with even atomic number tlierefore behave like individual bosons and those with odd atomic number as fennions, a distinction that plays an important role in rotational spectroscopy of polyatomic molecules. [Pg.30]

The Kronig-Peimey solution illustrates that, for periodic systems, gaps ean exist between bands of energy states. As for the ease of a free eleetron gas, eaeh band ean hold 2N eleetrons where N is the number of wells present. In one dimension, tliis implies that if a well eontains an odd number, one will have partially occupied bands. If one has an even number of eleetrons per well, one will have fully occupied energy bands. This distinetion between odd and even numbers of eleetrons per eell is of fiindamental importanee. The Kronig-Penney model implies that erystals with an odd number of eleetrons per unit eell are always metallie whereas an even number of eleetrons per unit eell implies an... [Pg.105]

For an isotropic material, all orientations are equally probable and all such products that have an odd number of Tike direction cosines will vanish upon averaging-. This restricts the nonvanishing tensor elements to those such as xVaaa abba - Similarly for the elements Such orientational averaging is crucial in... [Pg.1190]

In faot averaging over an odd number of direotion oosines need not always vanish for an isotropio system. This is the oase for solutions oontaining ohiral oentres whioh may exhibit even order signals suoh as BioCARS in table B1.3.2. [Pg.1221]

The conmron flash-lamp photolysis and often also laser-flash photolysis are based on photochemical processes that are initiated by the absorption of a photon, hv. The intensity of laser pulses can reach GW cm or even TW cm, where multiphoton processes become important. Figure B2.5.13 simnnarizes the different mechanisms of multiphoton excitation [75, 76, 112], The direct multiphoton absorption of mechanism (i) requires an odd number of photons to reach an excited atomic or molecular level in the case of strict electric dipole and parity selection rules [117],... [Pg.2130]

By using the determinant fomi of the electronic wave functions, it is readily shown that a phase-inverting reaction is one in which an even number of election pairs are exchanged, while in a phase-preserving reaction, an odd number of electron pairs are exchanged. This holds for Htickel-type reactions, and is demonstrated in Appendix A. For a definition of Hilckel and Mbbius-type reactions, see Section III. [Pg.332]

There are two mechanisms by which a phase change on the ground-state surface can take place. One, the orbital overlap mechanism, was extensively discussed by both MO [55] and VB [47] formulations, and involves the creation of a negative overlap between two adjacent atomic orbitals during the reaction (or an odd number of negative overlaps). This case was temied a phase dislocation by other workers [43,45,46]. A reaction in which this happens is... [Pg.344]

We term the in-phase combination an aromatic transition state (ATS) and the out-of-phase combination an antiaromatic transition state (AATS). An ATS is obtained when an odd number of electron pairs are re-paired in the reaction, and an AATS, when an even number is re-paired. In the context of reactions, a system in which an odd number of electrons (3, 5,...) are exchanged is treated in the same way—one of the electron pairs may contain a single electron. Thus, a three-electron system reacts as a four-electron one, a five-electron system as a six-electron one, and so on. [Pg.346]

In this chapter, recent advances in the theory of conical intersections for molecules with an odd number of electrons are reviewed. Section II presents the mathematical basis for these developments, which exploits a degenerate perturbation theory previously used to describe conical intersections in nonrelativistic systems [11,12] and Mead s analysis of the noncrossing rule in molecules with an odd number of electrons [2], Section III presents numerical illustrations of the ideas developed in Section n. Section IV summarizes and discusses directions for future work. [Pg.452]

In case the dimension of the t mabix is an odd number, the D mabix will always be the unit mabix I, namely, k must be an even number. This is so because an odd dimensional g mabix, always has the zero as an eigenvalue and this eigenvalue produces the (-1-1) in the D matrix that dictates the value of k in Eq. (73). [Pg.657]

Industrially nitrogen monoxide is prepared by the catalytic oxidation of ammonia as an intermediate in the manufacture of nitric acid (p. 238). The molecule of nitrogen monoxide contains an odd number of electrons and can be represented as... [Pg.230]

Cobalt has an odd number of electrons, and does not form a simple carbonyl in oxidation state 0. However, carbonyls of formulae Co2(CO)g, Co4(CO)i2 and CoJCO),6 are known reduction of these by an alkali metal dissolved in liquid ammonia (p. 126) gives the ion [Co(CO)4] ". Both Co2(CO)g and [Co(CO)4]" are important as catalysts for organic syntheses. In the so-called oxo reaction, where an alkene reacts with carbon monoxide and hydrogen, under pressure, to give an aldehyde, dicobalt octacarbonyl is used as catalyst ... [Pg.405]

This result applies when the number of up spins equals the number of down spins and so is not applicable to systems with an odd number of electrons. The correlation energy functional was also considered by Vosko, Wdk and Nusarr [Vosko et al. 1980], whose expression is ... [Pg.151]

Aliphatic hydrocarbons can be prepared by the reduction of the readily accessible ketones with amalgamated zinc and concentrated hydrochloric acid (Clemmensen method of reduction). This procedure is particularly valuable for the prep>aration of hydrocarbons wdth an odd number of carbon atoms where the Wurtz reaction cannot be applied with the higher hydrocarbons some secondary alcohol is produced, which must be removed by repeated distillation from sodium. [Pg.238]

As a consequence of the alternative distribution of an even number (2n) TT electrons on an odd number (2n - 1) carbon atoms, centers of the methine chain susceptible to nucleophilic attack are effectively the even carbons atoms starting from nitrogen, as it has been proven experimentally (103), particularly with a ketomethyiene giving a neutrocyanine compound (53, 67). [Pg.72]

Knott s rule concerns the importance of the place of the nitrogen atom replacing a methine carbon in the conjugated chain when the atom is separated from the active auxochromic atoms by an odd number of conjugated atoms, the shift is bathochromic. It is hypsochromic when there is an even number, Tne importance of the shift could establish a measure of M effect of various heterocyclic nuclei (79. 124). Many papers have been published, and examples have been given to verify these rules (79-84). [Pg.78]

Free radicals are species that contain unpaired electrons The octet rule notwithstand mg not all compounds have all of their electrons paired Oxygen (O2) is the most famil lar example of a compound with unpaired electrons it has two of them Compounds that have an odd number of electrons such as nitrogen dioxide (NO2) must have at least one unpaired electron... [Pg.167]


See other pages where Odd numbers is mentioned: [Pg.158]    [Pg.206]    [Pg.298]    [Pg.322]    [Pg.67]    [Pg.175]    [Pg.176]    [Pg.182]    [Pg.510]    [Pg.1138]    [Pg.1201]    [Pg.1407]    [Pg.2585]    [Pg.73]    [Pg.330]    [Pg.342]    [Pg.344]    [Pg.358]    [Pg.391]    [Pg.394]    [Pg.451]    [Pg.453]    [Pg.561]    [Pg.571]    [Pg.604]    [Pg.32]    [Pg.55]    [Pg.83]    [Pg.45]    [Pg.232]    [Pg.60]    [Pg.303]    [Pg.241]   
See also in sourсe #XX -- [ Pg.10 , Pg.162 ]




SEARCH



Complex Formation of Odd-Number Surfactants with Biphenyl

Even-over-odd carbon number predominance

Fatty odd numbered

Odd Number of Electrons

Odd carbon number fatty acids

Odd-Numbered Chain and Branched Fatty Acids

Odd-even electron numbers and energy level statistics in cluster assemblies

Odd-number sampling

Odd-numbered elements

Odd-numbered hydrocarbons

Odd-numbered nylons

SOLUTIONS TO ODD-NUMBERED CONCEPT BUILDERS AND SUPPORTING CALCULATIONS

© 2024 chempedia.info