Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Numerical solution of mathematical

We would like to discuss the questions raised above in more detail. Obviously, in numerical solution of mathematical problems it is unrealistic to reproduce a difference solution for all the values of the argument varying in a certain domain of a prescribed Euclidean space. The traditional way of covering this is to select some finite set of points in this domain and look for an approximate solution only at those points. Any such set of points is called a grid and the isolated points are termed the grid nodes. [Pg.51]

N. F. Gavrilov, G. G. Ivanova, V. N. Selin, V. N. Sofronov, UP-OK program for solving continuum mechanics problems in one-dimensional complex, VANT. Procedures and programs for numerical solution of mathematical physics problems, (3), p. 11-21,1982. [Pg.284]

We further discuss how quantities typically measured in the experiment (such as a rate constant) can be computed with the new formalism. The computations are based on stochastic path integral formulation [6]. Two different sources for stochasticity are considered. The first (A) is randomness that is part of the mathematical modeling and is built into the differential equations of motion (e.g. the Langevin equation, or Brownian dynamics). The second (B) is the uncertainty in the approximate numerical solution of the exact equations of motion. [Pg.264]

The development of combustion theory has led to the appearance of several specialized asymptotic concepts and mathematical methods. An extremely strong temperature dependence for the reaction rate is typical of the theory. This makes direct numerical solution of the equations difficult but at the same time accurate. The basic concept of combustion theory, the idea of a flame moving at a constant velocity independent of the ignition conditions and determined solely by the properties and state of the fuel mixture, is the product of the asymptotic approach (18,19). Theoretical understanding of turbulent combustion involves combining the theory of turbulence and the kinetics of chemical reactions (19—23). [Pg.517]

Computers have come to play a significant role in solving complicated mathematical models describing operations. They are frequently used in conjunction with simulation, Monte Carlo, operational gaming, and numerical solution of various mathematical models. [Pg.254]

In view of this, the economy requirement becomes rather urgent and extremely important in numerical solution of multidimensional problems arising time and again in mathematical physics. [Pg.544]

Usually the finite difference method or the grid method is aimed at numerical solution of various problems in mathematical physics. Under such an approach the solution of partial differential equations amounts to solving systems of algebraic equations. [Pg.777]

One of the popular branches of modern mathematics is the theory of difference schemes for the numerical solution of the differential equations of mathematical physics. Difference schemes are also widely used in the general theory of differential equations as an apparatus available for proving existence theorems and investigating the differential properties of solutions. [Pg.781]

In the solution of mathematical models by digital simulation, the numerical integration routine is usually required to achieve the solution of sets of simultaneous, first-order differential equations in the form... [Pg.122]

The next two steps after the development of a mathematical process model and before its implementation to "real life" applications, are to handle the numerical solution of the model s ode s and to estimate some unknown parameters. The computer program which handles the numerical solution of the present model has been written in a very general way. After inputing concentrations, flowrate data and reaction operating conditions, the user has the options to select from a variety of different modes of reactor operation (batch, semi-batch, single continuous, continuous train, CSTR-tube) or reactor startup conditions (seeded, unseeded, full or half-full of water or emulsion recipe and empty). Then, IMSL subroutine DCEAR handles the numerical integration of the ode s. Parameter estimation of the only two unknown parameters e and Dw has been described and is further discussed in (32). [Pg.223]

Photosensitization of diaryliodonium salts by anthracene occurs by a photoredox reaction in which an electron is transferred from an excited singlet or triplet state of the anthracene to the diaryliodonium initiator.13"15,17 The lifetimes of the anthracene singlet and triplet states are on the order of nanoseconds and microseconds respectively, and the bimolecular electron transfer reactions between the anthracene and the initiator are limited by the rate of diffusion of reactants, which in turn depends upon the system viscosity. In this contribution, we have studied the effects of viscosity on the rate of the photosensitization reaction of diaryliodonium salts by anthracene. Using steady-state fluorescence spectroscopy, we have characterized the photosensitization rate in propanol/glycerol solutions of varying viscosities. The results were analyzed using numerical solutions of the photophysical kinetic equations in conjunction with the mathematical relationships provided by the Smoluchowski16 theory for the rate constants of the diffusion-controlled bimolecular reactions. [Pg.96]

In the MO approach molecular orbitals are expressed as a linear combination of atomic orbitals (LCAO) atomic orbitals (AO), in return, are determined from the approximate numerical solution of the electronic Schrodinger equation for each of the parent atoms in the molecule. This is the reason why hydrogen-atom-like wavefunctions continue to be so important in quantum mechanics. Mathematically, MO-LCAO means that the wave-functions of the molecule containing N atoms can be expressed as... [Pg.106]

The mathematical model developed in the preceding section consists of six coupled, three-dimensional, nonlinear partial differential equations along with nonlinear algebraic boundary conditions, which must be solved to obtain the temperature profiles in the gas, catalyst, and thermal well the concentration profiles and the velocity profile. Numerical solution of these equations is required. [Pg.129]

Models for the electronic structure of polynuclear systems were also developed. Except for metals, where a free electron model of the valence electrons was used, all methods were based on a description of the electronic structure in terms of atomic orbitals. Direct numerical solutions of the Hartree-Fock equations were not feasible and the Thomas-Fermi density model gave ridiculous results. Instead, two different models were introduced. The valence bond formulation (5) followed closely the concepts of chemical bonds between atoms which predated quantum theory (and even the discovery of the electron). In this formulation certain reasonable "configurations" were constructed by drawing bonds between unpaired electrons on different atoms. A mathematical function formed from a sum of products of atomic orbitals was used to represent each configuration. The energy and electronic structure was then... [Pg.27]

The kinetic equation (4.27) with the energy function (4.52), first studied by Brown [47], has since been investigated extensively [48,54-59]. However, due to mathematical difficulties, the case of arbitrary orientation of the external and anisotropy fields (i.e., vectors h and n) has been addressed only relatively recently. The numerical solution of the relaxation problem for h and n crossed under an arbitrary angle for the first time was given in Ref. 60. [Pg.441]

A mathematical model of a plant or a section of a plant can be judged only by comparison with actual plant data. The model may be considered as good when the simulated variables can predict with some level of confidence the plant parameters which are important in determining the cost and quality of the finished product. Failures of the model are likely to be a result of (1) oversimplification of the equations that constitute the model, (2) inadequacy of the numerical solution of the equations. [Pg.88]

It is proper to emphasize the fact that there is no mathematical way of determining how correct is the numerical solution of a nonlinear differential equation, just by looking at what an algorithm predicts for linear forms of the same problem. Even if a computer program generates accurate numerical solutions which are in agreement with analytical solutions of the linear forms of a nonlinear equation, the solutions in the nonlinear domain may not be correct. [Pg.88]

Simulation The numerical solution of a mathematical model, often refers to the numerical solution of a model of an entire process flowsheet. [Pg.129]

P. O. Bogdanovich, Collection of Programs of Mathematical Software for Atomic Calculations, No. 2 Program for Numerical Solution of Hartree-Fock Equations, Akademiya Nauk Litovskoi SSR, Institut Fiziki, Vilnius, USSR, 1978. [Pg.308]

The mathematical models of the reacting polydispersed particles usually have stiff ordinary differential equations. Stiffness arises from the effect of particle sizes on the thermal transients of the particles and from the strong temperature dependence of the reactions like combustion and devolatilization. The computation time for the numerical solution using commercially available stiff ODE solvers may take excessive time for some systems. A model that uses K discrete size cuts and N gas-solid reactions will have K(N + 1) differential equations. As an alternative to the numerical solution of these equations an iterative finite difference method was developed and tested on the pyrolysis model of polydispersed coal particles in a transport reactor. The resulting 160 differential equations were solved in less than 30 seconds on a CDC Cyber 73. This is compared to more than 10 hours on the same machine using a commercially available stiff solver which is based on Gear s method. [Pg.215]

Over the past ten years the numerical simulation of the behavior of complex reaction systems has become a fairly routine procedure, and has been widely used in many areas of chemistry, [l] The most intensive application has been in environmental, atmospheric, and combustion science, where mechanisms often consisting of several hundred reactions are involved. Both deterministic (numerical solution of mass-action differential equations) and stochastic (Monte-Carlo) methods have been used. The former approach is by far the most popular, having been made possible by the development of efficient algorithms for the solution of the "stiff" ODE problem. Edelson has briefly reviewed these developments in a symposium volume which includes several papers on the mathematical techniques and their application. [2]... [Pg.83]

If a discrete inf-sup inequality is satisfied by the velocity and pressure elements, then the discrete problem has a unique solution converging to the solution of the continuous one (see equation (27) of the chapter Mathematical Analysis of Differential models for Viscoelastic Fluids). This condition is referred to as the Brezzi-Babuska condition and can be checked element by element. Finite element methods for viscous flows are now well established and pairs of elements satisfying the Brezzi-Babuska condition are referenced (see [6]). Two strategies are used to compute the numerical solution of these equations involving velocity and pressure. [Pg.241]

In ref. 142 the authors are studied the Numerov-type ODE solvers for the numerical solution of second-order initial value problems. They present a powerful and efficient symbolic code in MATHEMATICA for the derivation of their order conditions and principal truncation error terms. They also present the relative tree theory for such order conditions along with the elements of combinatorial mathematics, partitions of integer numbers and computer algebra which are the basis of the implementation of the S5unbolic code. We must that one of the authors is an expert on this specific field. [Pg.399]


See other pages where Numerical solution of mathematical is mentioned: [Pg.185]    [Pg.185]    [Pg.17]    [Pg.18]    [Pg.376]    [Pg.182]    [Pg.43]    [Pg.179]    [Pg.114]    [Pg.376]    [Pg.872]    [Pg.414]    [Pg.310]    [Pg.218]    [Pg.181]    [Pg.285]    [Pg.370]    [Pg.71]    [Pg.8]    [Pg.7]    [Pg.240]    [Pg.305]   


SEARCH



Mathematical solution

Numerical mathematics

Numerical solution

© 2024 chempedia.info