Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilicities, intrinsic

This thesis has been completely devoted to catalysis by relatively hard catalysts. When aiming at the catalysis of Diels-Alder reactions, soft catalysts are not an option. Soft catalysts tend to coordinate directly to the carbon - carbon double bonds of diene and dienophile, leading to an activation towards nucleophilic attack rather than to a Diels-Alder reaction . This is unfortunate, since in water, catalysis by hard catalysts suffers from a number of intrinsic disadvantages, which are absent for soft catalysts. [Pg.163]

Other measures of nucleophilicity have been proposed. Brauman et al. studied Sn2 reactions in the gas phase and applied Marcus theory to obtain the intrinsic barriers of identity reactions. These quantities were interpreted as intrinsic nucleo-philicities. Streitwieser has shown that the reactivity of anionic nucleophiles toward methyl iodide in dimethylformamide (DMF) is correlated with the overall heat of reaction in the gas phase he concludes that bond strength and electron affinity are the important factors controlling nucleophilicity. The dominant role of the solvent in controlling nucleophilicity was shown by Parker, who found solvent effects on nucleophilic reactivity of many orders of magnitude. For example, most anions are more nucleophilic in DMF than in methanol by factors as large as 10, because they are less effectively shielded by solvation in the aprotic solvent. Liotta et al. have measured rates of substitution by anionic nucleophiles in acetonitrile solution containing a crown ether, which forms an inclusion complex with the cation (K ) of the nucleophile. These rates correlate with gas phase rates of the same nucleophiles, which, in this crown ether-acetonitrile system, are considered to be naked anions. The solvation of anionic nucleophiles is treated in Section 8.3. [Pg.360]

Efforts to establish a theoretical explanation of the reactivity of nucleophilic reagents have centered on correlations with intrinsic electron-donor properties which are the fundamental basis of nucleophilicity. According to Edwards and Pearson, in general, such properties include basicity, polarizability, and the presence of unshared electron pairs on the atom adjacent to the nucleophilic atom of the reagent. When only the first two of these properties are operative, Eq. (8), which was proposed by Edwards, has proved successful in... [Pg.301]

Since equatorial attack is roughly antiperiplanar to two C-C bonds of the cyclic ketone, an extended hypothesis of antiperiplanar attack was proposed39. Since the incipient bond is intrinsically electron deficient, the attack of a nucleophile occurs anti to the best electron-donor bond, with the electron-donor order C—S > C —H > C —C > C—N > C—O. The transition state-stabilizing donor- acceptor interactions are assumed to be more important for the stereochemical outcome of nucleophilic addition reactions than the torsional and steric effects suggested by Felkin. [Pg.5]

The ferrocenyldiphynylpropargyl cation, 77, has an intrinsic delocalization nature exhibiting a valence tautomerization band at 856 nm, and its nucleophilic trapping reactions give rise to the formation of ferrocenyldiphyenylallenes (173). The bis(acetylide) mixed-valence complexes of ferrocene and the Ru complex moiety, 78, also behave as a fulvene-cumulene structure, 79, showing a u(M=C = C—C) band at 1985 cm-1 (174). Related alleylidene and cumulenylidene complexes of transition metals have been reviewed by Bruce (175). [Pg.80]

Irreversible inhibition is probably due to the alkylation of a histidine residue.43 Chymotrypsin is selectively inactivated with no or poor inhibition of human leukocyte elastase (HLE) with a major difference the inactivation of HLE is transient.42,43 The calculated intrinsic reactivity of the coumarin derivatives, using a model of a nucleophilic reaction between the ligand and the methanol-water pair, indicates that the inhibitor potency cannot be explained solely by differences in the reactivity of the lactonic carbonyl group toward the nucleophilic attack 43 Studies on pyridyl esters of 6-(chloromethyl)-2-oxo-2//-1 -benzopyran-3-carboxylic acid (5 and 6, Fig. 11.5) and related structures having various substituents at the 6-position (7, Fig. 11.5) revealed that compounds 5 and 6 are powerful inhibitors of human leukocyte elastase and a-chymotrypsin thrombin is inhibited in some cases whereas trypsin is not inhibited.21... [Pg.365]

The psychotropic (stimulant) action of amphetaminil (57) may be intrinsic or due to in vivo hydrolysis of the a-aminonitrile function—akin to a cyanohydrin—to liberate amphetamine itself. It is synthesized by forming the Schiff s base of amphetamine with benzaldehyde to give 56, and then nucleophilic attack on the latter with cyanide anion to... [Pg.48]

It has been suggested that the elusive zwitterionic state [75], or a novel nucleophilic addition/elimination mechanism at the central carbon of the exocyclic bridge [79], or solvent-solute H-bonding interactions [76, 80] might play a role in modulating cis-trans interconversion. Cis-trans isomerization gives rise also to a remarkable intrinsic photochromism of HBI, as it can be easily and reversibly induced upon light absorption [74—76, 79, 80]. [Pg.356]

The values of ks/kp for partitioning of carbocations are most conveniently determined as the ratio of the yields of products from the competing nucleophile addition and proton transfer reactions (equation 1 derived for Scheme 2). The determination of these product yields has been simplified in recent years by the application of high-pressure liquid chromatography (HPLC). Typically, the product peaks from an HPLC analysis are detected and quantified by UV-vis spectroscopy. In cases where the absorbance of reactants and products is small, substrates may be prepared with a chromophore placed at a sufficient distance so that its effects on the intrinsic reactivity of the carbocationic center are negligible. For example, the aliphatic substrates [1]-Y have proved to be very useful in studies of the reactions of the model tertiary carbocation [1+].21,23... [Pg.72]

The extent to which the effect of changing substituents on the values of ks and kp is the result of a change in the thermodynamic driving force for the reaction (AG°), a change in the relative intrinsic activation barriers A for ks and kp, or whether changes in both of these quantities contribute to the overall substituent effect. This requires at least a crude Marcus analysis of the substituent effect on the rate and equilibrium constants for the nucleophile addition and proton transfer reactions (equation 2).71-72... [Pg.81]

Fig. 4 Free energy reaction coordinate profiles that illustrate a change in the relative kinetic barriers for partitioning of carbocations between nucleophilic addition of solvent and deprotonation resulting from a change in the curvature of the potential energy surface for the nucleophile addition reaction. This would correspond to an increase in the intrinsic barrier for the thermoneutral carbocation-nucleophile addition reaction. Fig. 4 Free energy reaction coordinate profiles that illustrate a change in the relative kinetic barriers for partitioning of carbocations between nucleophilic addition of solvent and deprotonation resulting from a change in the curvature of the potential energy surface for the nucleophile addition reaction. This would correspond to an increase in the intrinsic barrier for the thermoneutral carbocation-nucleophile addition reaction.
Our analysis of literature data will focus on two closely related questions about the influence of changes in the relative thermodynamic driving force and Marcus intrinsic barrier for the reaction of simple carbocations with Bronsted bases (alkene formation) and Lewis bases (nucleophile addition) on the values of ks/kp determined by experiment. [Pg.83]

To what extent are the variations in the rate constant ratio /cs//cpobserved for changing structure of aliphatic and benzylic carbocations the result of changes in the Marcus intrinsic barriers Ap and As for the deprotonation and solvent addition reactions It is not generally known whether there are significant differences in the intrinsic barriers for the nucleophile addition and proton transfer reactions of carbocations. [Pg.83]

The more favorable partitioning of [1+ ] to form [l]-OH than to form [2] must be due, at least in part, to the 4.0 kcal mol-1 larger thermodynamic driving force for the former reaction (Kadd = 900 for conversion of [2] to [l]-OH, Table 1). However, thermodynamics alone cannot account for the relative values of ks and kp for reactions of [1+] that are limited by the rate of chemical bond formation, which may be as large as 600. A ratio of kjkp = 600 would correspond to a 3.8 kcal mol-1 difference in the activation barriers for ks and kp, which is almost as large as the 4.0 kcal mol 1 difference in the stability of [1]-OH and [2]. However, only a small fraction of this difference should be expressed at the relatively early transition states for the reactions of [1+], because these reactions are strongly favored thermodynamically. These results are consistent with the conclusion that nucleophile addition to [1+] is an inherently easier reaction than deprotonation of this carbocation, and therefore that nucleophile addition has a smaller Marcus intrinsic barrier. However, they do not allow for a rigorous estimate of the relative intrinsic barriers As — Ap for these reactions. [Pg.86]

There is a 4kcalmol 1 smaller intrinsic barrier As for nucleophilic addition of water to the benzylic carbocations X-[6+] than for deprotonation of X-[6+] by solvent. This difference reflects the greater ease of direct addition of solvent to the charged benzylic carbon of X-[6+] than of proton transfer at the adjacent a-methyl carbon. This may result in some way from the greater number of bonds formed and cleaved in the proton transfer than in the nucleophile addition reaction. However, it is our impression that there is little or no theoretical justification for generalizations of this type. [Pg.90]

Bunting and Kanter have developed a modified form of the Marcus equation to treat the changes in intrinsic barrier A observed for deprotonation of /J-keto esters and amides.81 It would be useful to consider similar modifications of the Marcus equation to model the variable intrinsic barriers observed for carboca-tion-nucleophile addition reactions. [Pg.91]

The partitioning of ferrocenyl-stabilized carbocations [30] between nucleophile addition and deprotonation (Scheme 18) has been studied by Bunton and coworkers. In some cases the rate constants for deprotonation and nucleophile addition are comparable, but in others they favor formation of the nucleophile adduct. However, the alkene product of deprotonation of [30] is always the thermodynamically favored product.120. In other words, the addition of water to [30] gives an alcohol that is thermodynamically less stable than the alkene that forms by deprotonation of [30], but the reaction passes over an activation barrier whose height is equal to, or smaller than, the barrier for deprotonation of [30], These data require that the intrinsic barrier for thermoneutral addition of water to [30] (As) be smaller than the intrinsic barrier for deprotonation of [30] (Ap). It is not known whether the magnitude of (Ap — As) for the reactions of [30] is similar to the values of (Ap - As) = 4-6 kcal mol 1 reported here for the partitioning of a-methyl benzyl carbocations. [Pg.109]

The results described in this review provide support for the following generalizations about the influence of thermodynamics and intrinsic kinetic barriers on the partitioning of carbocations between nucleophilic addition of aqueous solvents to form a tetrahedral adduct (ks) and proton transfer to these solvents to form an alkene (kp). [Pg.110]

The intrinsic barrier for the addition of solvent to an a-alkoxy benzyl carbocation is several kcal mol-1 smaller than that for the corresponding reaction of ring-substituted 1-phenylethyl carbocations. This result is consistent with the conclusion that these nucleophile addition reactions become intrinsically easier as stabilizing resonance electron donation from an a-phenyl group to the cationic center is replaced by electron donation from an a-alkoxy group. [Pg.111]


See other pages where Nucleophilicities, intrinsic is mentioned: [Pg.114]    [Pg.111]    [Pg.259]    [Pg.114]    [Pg.111]    [Pg.259]    [Pg.489]    [Pg.29]    [Pg.140]    [Pg.7]    [Pg.174]    [Pg.598]    [Pg.172]    [Pg.223]    [Pg.79]    [Pg.335]    [Pg.41]    [Pg.403]    [Pg.331]    [Pg.257]    [Pg.68]    [Pg.81]    [Pg.81]    [Pg.83]    [Pg.87]    [Pg.88]    [Pg.88]    [Pg.88]    [Pg.89]    [Pg.96]    [Pg.111]    [Pg.111]    [Pg.148]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Intrinsic nucleophilicity

Intrinsic nucleophilicity

© 2024 chempedia.info