Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic constant compounds

Electronic absorption studies were performed on compounds 90 and 91 in dimethylformamide (DMF) the longest wavelength maxima at 503-567 nm arising from intramolecular charge transfer (ITC) are shifted bathochromically with an increase in the sum of the nucleophilic constant btt-attached to the fluorene ring. An equation to enable calculation of this effect was devised <2001MM2232>. [Pg.610]

Nucleophilic reactivity of the sulfur atom has received most attention. When neutral or very acidic medium is used, the nucleophilic reactivity occurs through the exocyclic sulfur atom. Kinetic studies (110) measure this nucleophilicity- towards methyl iodide for various 3-methyl-A-4-thiazoline-2-thiones. Rate constants are 200 times greater for these compounds than for the isomeric 2-(methylthio)thiazole. Thus 3-(2-pyridyl)-A-4-thiazoline-2-thione reacts at sulfur with methyl iodide (111). Methyl substitution on the ring doubles the rate constant. This high reactivity at sulfur means that, even when an amino (112, 113) or imino group (114) occupies the 5-position of the ring, alkylation takes place on sulfiu. For the same reason, 2-acetonyi derivatives are sometimes observed as by-products in the heterocyclization reaction of dithiocarba-mates with a-haloketones (115, 116). [Pg.391]

For a fixed nucleophile the rate constant of each compound at 50 C Cdiffercni temperatures indicated) was divided by the following values of 2-chlorothia20le (k in unless otherwise indicated) ... [Pg.568]

The other C=N systems included in Scheme 8.2 are more stable to aqueous hydrolysis than are the imines. For many of these compounds, the equilibrium constants for formation are high, even in aqueous solution. The additional stability can be attributed to the participation of the atom adjacent to the nitrogen in delocalized bonding. This resonance interaction tends to increase electron density at the sp carbon and reduces its reactivity toward nucleophiles. [Pg.460]

It was noted early by Smid and his coworkers that open-chained polyethylene glycol type compounds bind alkali metals much as the crowns do, but with considerably lower binding constants. This suggested that such materials could be substituted for crown ethers in phase transfer catalytic reactions where a larger amount of the more economical material could effect the transformation just as effectively as more expensive cyclic ethers. Knbchel and coworkers demonstrated the application of open-chained crown ether equivalents in 1975 . Recently, a number of applications have been published in which simple polyethylene glycols are substituted for crowns . These include nucleophilic substitution reactions, as well as solubilization of arenediazonium cations . Glymes have also been bound into polymer backbones for use as catalysts " " . [Pg.312]

Hydrolysis of an enamine yields a carbonyl compound and a secondary amine. Only a few rate constants are mentioned in the literature. The rate of hydrolysis of l-(jS-styryl)piperidine and l-(l-hexenyl)piperidine have been determined in 95% ethanol at 20°C 13). The values for the first-order rate constants are 4 x 10 sec and approximately 10 sec , respectively. Apart from steric effects the difference in rate may be interpreted in terms of resonance stabilization by the phenyl group on the vinyl amine structure, thus lowering the nucleophilic reactivity of the /3-carbon atom of that enamine. [Pg.103]

As a first approximation, within a given family of nucleophilic reagents, such as amines, basicity changes are mainly responsible for differences in nucleophilic power. The p values of some of the more familiar amines together with the rate constants for some of their reactions with chloroheteroaromatic compounds are shown... [Pg.302]

One of the merits of the above treatment, which justifies its inclusion in this review, is that it allows a quantitative comparison of the selectivity of nucleophilic heteroaromatic substitution (expressed by the reaction constant) with that for the analogous reaction with nitro-activated systems. Values for the latter are in the range 3.6 to 6.0. The fact that in both cases high p-values of similar magnitude are found is consistent with the hypothesis of similar mechanisms for both classes of compounds. [Pg.337]

Further lowering the dielectric constants has been achieved by preparing highly fluorinated polyethers without any sulfone, ketone, or other polarizable groups.239 241 Typically, the /jara-lluorinc atoms on highly fluorinated aromatic compounds, such as hexafluorobenzene and decafluorobiphenyl, are activated and thus can go through aromatic nucleophilic substitution with HFBPA under typical reaction conditions (Scheme 6.31).217... [Pg.362]

A fluxional amido-salt (24), in which the y-nitrogen atom acts as an internal nucleophile, has been identified by variable-temperature n.m.r. spectroscopy. At — 63 °C two methyl signals are observed, one a singlet, one a doublet (J = 11 Hz) whereas at + 60 °C there is only one signal, a doublet with J = 5.5 Hz (the average of the low-temperature coupling constants). The solvent extraction of organophosphorus compounds has also been studied by and H n.m.r, ... [Pg.255]

TABLE 1.2. Equilibrium constants for addition of nucleophiles to carbonyl compounds. ... [Pg.10]

What this implies is that given one equilibrium constant for addition of a nucleophile of known 7 to a carbonyl compound, one could estimate the equilibrium constant for addition of another nucleophile to the same carbonyl compound. This requires knowing the slope of the plot of log K versus y this slope is not very sensitive to the nature of the carbonyl compound, but it is at least known that A H2o/ MeOH depends on the electron-withdrawing power of the groups bonded to the carbonyl, and thus more information is needed to estimate an equilibrium constant for strongly electron-withdrawing substituents. From Ritchie s studies of nucleophile addition to trifluoroacetophenone," we can derive a slope for log K versus 7 of 0.42, distinctly less than the value of 1 for formaldehyde or simple benzaldehydes. [Pg.13]

The nucleophilic displacement reactions of organolithium compounds with alkyl halides are second order insofar as the rates have been measured, but there are unexplained examples of autocatalysis and non-reproducable rate constants. The product of the reaction in the case of the methylallyl chlorides is the same mixture regardless of... [Pg.207]

Without added acid or nucleophile the lability of the starting compound is very low (<1 x 10"8 s"1) most probably because of the efficient ring-closing process [18]. The second step depends linearly on the pH with a rate constant of 1.61 x 10"4 M 1 s 1. In the presence of added Cl-, the final product of the hydrolysis is m-DDP although the relevance of similar process in vivo was questioned [18]. It has been reported that carboplatin bound to DNA retains the dicarboxylate group, probably as a monodentate ligand [19]. [Pg.171]

Compound 10 has also been used to quantify double Lewis acid activation by two cobalt (HI) ions [37]. In 12, the RNA analogue 2-hydroxypropyl-phenyl phosphate (HPPP) is coordinated to the dinu-clear cobalt site. It is well known that in this substrate the hydroxypropyl group is an efficient intramolecular nucleophile. Release of phenol by intramolecular cyclization is much faster than the reaction by nucleophilic attack of bridging oxide, as observed in 11. At pH >8, transesterification rate is linearly dependent on hydroxide concentration since OH" acts as an intermolecular base for the deprotonation of the hydroxypropyl group. The second order rate constant for the hydroxide-dependent cleavage is 4 x 105 times larger than the second-order rate constant for the hydroxide-dependent spontaneous transesterification of hy-droxypropyl-phenyl phosphate. [Pg.222]

Rate constants of bimolecular, micelle-assisted, reactions typically go through maxima with increasing concentration of inert surfactant (Section 3). But a second rate maximum is observed in very dilute cationic surfactant for aromatic nucleophilic substitution on hydrophobic substrates. This maximum seems to be related to interactions between planar aromatic molecules and monomeric surfactant or submicellar aggregates. These second maxima are not observed with nonplanar substrates, even such hydrophobic compounds as p-nitrophenyl diphenyl phosphate (Bacaloglu, R. 1986, unpublished results). [Pg.310]

The second relevant set of data is for the formation of the anhydride from substituted succinic acid derivatives. Equilibrium constants for the formation of the anhydride from the acid are available for the various methyl-substituted compounds (Table A.l) and the derived EM s are compared in Table 5 with those for intramolecular nucleophilic catalysis in the hydrolysis of half-esters... [Pg.202]

Mechanistic aspects of the intermolecular cyclization reaction in the anodic oxidation of catechol in the presence of 4-hydroxycoumarin were discussed in Sect. 2.2. This reaction is a synthetically simple and versatile method for the preparation of formally [3 + 2] cycloadducts between a -diketo compound and catechol [44,45]. Anodic oxidation of catechol using controlled potential electrolysis (E = 0.9-1.1 V vs SCE) or constant current electrolysis (i = 5 mA/cm ) was performed in water solution containing sodium acetate (0.15 mol/1) in the presence of various nucleophiles such as 4-hydroxycoumarin,... [Pg.128]


See other pages where Nucleophilic constant compounds is mentioned: [Pg.22]    [Pg.235]    [Pg.142]    [Pg.569]    [Pg.493]    [Pg.712]    [Pg.267]    [Pg.226]    [Pg.288]    [Pg.316]    [Pg.324]    [Pg.252]    [Pg.201]    [Pg.379]    [Pg.184]    [Pg.1039]    [Pg.6]    [Pg.11]    [Pg.8]    [Pg.227]    [Pg.21]    [Pg.68]    [Pg.186]    [Pg.187]    [Pg.243]    [Pg.644]    [Pg.1281]    [Pg.547]    [Pg.750]    [Pg.97]    [Pg.102]   
See also in sourсe #XX -- [ Pg.462 , Pg.466 ]




SEARCH



Nucleophilic constant

Nucleophilic constant nucleophilicity

© 2024 chempedia.info