Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject nuclear magnetic resonance

Nuclear magnetic resonance has become such an importnat technique in organic chemistry that contemporary textbooks in the subject discuss its principles quite thoroughly, as do texts in physical and analytical chemistry. We note only a few pertinent highlights of the method ... [Pg.463]

Very little in the way of advances has occurred since 1971 in the applications of ultraviolet or infrared spectroscopy to the analysis of fluonnated organic compounds Therefore, only gas-liquid chromatography, liquid chromatography, mass spectrometry, and electron scattering for chemical analysis (ESCA) are discussed The application of nuclear magnetic resonance (NMR) spectroscopy to the analysis of fluonnated organic compounds is the subject of another section of this chapter... [Pg.1029]

The presence of iminium salts can be detected by chemical means or by spectroscopic methods. The chemical means of detecting iminium salts are reactions with nucleophiles and are the subject of this review. The spectroscopic methods are more useful for rapid identification because with the large number of model compounds available now the spectroscopic methods are fast and reliable. The two methods that are used primarily are infrared and nuclear magnetic resonance spectroscopy. Some attempts have been made to determine the presence of iminium salts by ultraviolet spectroscopy, but these are not definitive as yet (14,25). [Pg.176]

In this review the definition of orientation and orientation functions or orientation averages will be considered in detail. This will be followed by a comprehensive account of the information which can be obtained by three spectroscopic techniques, infra-red and Raman spectroscopy and broad line nuclear magnetic resonance. The use of polarized fluorescence will not be discussed here, but is the subject of a contemporary review article by the author and J. H. Nobbs 1. The present review will be completed by consideration of the information which has been obtained on the development of molecular orientation in polyethylene terephthalate and poly(tetramethylene terephthalate) where there are also clearly defined changes in the conformation of the molecule. In this paper, particular attention will be given to the characterization of biaxially oriented films. Previous reviews of this subject have been given by the author and his colleagues, but have been concerned with discussion of results for uniaxially oriented systems only2,3). [Pg.83]

In this review recent theoretical developments which enable quantitative measures of molecular orientation in polymers to be obtained from infra-red and Raman spectroscopy and nuclear magnetic resonance have been discussed in some detail. Although this is clearly a subject of some complexity, it has been possible to show that the systematic application of these techniques to polyethylene terephthalate and polytetramethylene terephthalate can provide unique information of considerable value. This information can be used on the one hand to gain an understanding of the mechanisms of deformation, and on the other to provide a structural understanding of physical properties, especially mechanical properties. [Pg.114]

The identification, using analytical microprobe and solid-state magic-angle nuclear magnetic resonance (NM techniques, of aluminosilicate deposits in the cores of the pathognomic senile plaques in the brains of Alzheimer subjects (Candy et al., 1986) has prompted widespread scientific and public concern, and controversy with regard to the possible aetiological role of environmental aluminium and aluminosilicates in senile dementia (Walton, 1991). [Pg.252]

The title Spectroscopy in Catalysis is attractively compact but not quite precise. The book also introduces microscopy, diffraction and temperature programmed reaction methods, as these are important tools in the characterization of catalysts. As to applications, I have limited myself to supported metals, oxides, sulfides and metal single crystals. Zeolites, as well as techniques such as nuclear magnetic resonance and electron spin resonance have been left out, mainly because the author has little personal experience with these subjects. Catalysis in the year 2000 would not be what it is without surface science. Hence, techniques that are applicable to study the surfaces of single crystals or metal foils used to model catalytic surfaces, have been included. [Pg.10]

Nuclear magnetic resonance (NMR) spectroscopy is used to study the behavior of the nuclei in a molecule when subjected to an externally applied magnetic field. Nuclei spin about the axis of the externally applied magnetic field and consequently possess an angular momentum. The group of nuclei most commonly exploited in the structural... [Pg.15]

PHA content and composition in the lyophilized cell material were determined using gas chromatography (GC) and nuclear magnetic resonance (NMR) analyses. For GC analysis [17], approximately 15 mg of lyophihzed cell was subjected to methanolysis in the presence of methanol and sulfuric acid [85% 15% (v/v)]. The reaction mixture was incubated at 100°C for 3 hours. The organic layer containing the reaction products was separated, dried over Na SO, and analyzed by GC. For... [Pg.189]

In an attempt to delineate the degree of preservation of lignin in pre-Tertiary coal, we examined numerous coalified wood samples ranging in age from Carboniferous to Cretaceous. The samples were initially screened by solid-state l C nuclear magnetic resonance to detect the possible presence of methoxyl carbon. Once such carbons were detected, the samples were subjected to analytical pyrolysis to determine the relative yields of methoxyphenols which would provide an indication of the state of preservation of the lignin-derived structu units. We report here on the identification of lignin-derived methoxyphenols in the coalified wood samples selected for analytical pyrolysis. [Pg.10]

The cationic ring-opening polymerization of cyclic ethers has been the subject of many recent investigations (1.. Nuclear magnetic resonance (NMR) methods, particularly carbon-13 techniques, have been found most useful in studying the mechanism of these polymerizations ( ). In the present review we would like to report some of our recent work in this field. [Pg.237]

The nuclear magnetic resonance (NMR) method is based on the interaction between matter and electromagnetic forces, and can be observed by subjecting... [Pg.134]

Thanks to the extensive literature on Aujj and the related smaller gold cluster compounds, plus some new results and reanalysis of older results to be presented here, it is now possible to paint a fairly consistent physical picture of the AU55 cluster system. To this end, the results of several microscopic techniques, such as Extended X-ray Absorption Fine Structure (EXAFS) [39,40,41], Mossbauer Effect Spectroscopy (MES) [24, 25, 42,43,44,45,46], Secondary Ion Mass Spectrometry (SIMS) [35, 36], Photoemission Spectroscopy (XPS and UPS) [47,48,49], nuclear magnetic resonance (NMR) [29, 50, 51], and electron spin resonance (ESR) [17, 52, 53, 54] will be combined with the results of several macroscopic techniques, such as Specific Heat (Cv) [25, 54, 55, 56,49], Differential Scanning Calorimetry (DSC) [57], Thermo-gravimetric Analysis (TGA) [58], UV-visible absorption spectroscopy [40, 57,17, 59, 60], AC and DC Electrical Conductivity [29,61,62, 63,30] and Magnetic Susceptibility [64, 53]. This is the first metal cluster system that has been subjected to such a comprehensive examination. [Pg.3]

A similar in vitro system used [%] A-9-DMHP mass spectra of incubation extracts were silylated and subjected to gas chromato-graphy/mass spectrometry. Strong evidence was accumulated that the major metabolite was U-hydroxy-DMHP. Overall recovery of the metabolite was only A.7% this low yield was insufficient for confirmatory analyses by other methods, such as nuclear magnetic resonance. The low recovery indicated to the investigators that DMHP and its metabolites are much more strongly bound to tissue components than are THC and its metabolites. Sixteen hours after injection of [ HjDMHP into mice, their brains were extracted. Gas chromatography of the extracts indicated retention times identical with those of synthetic 11-hydroxy-DMHP, which accounted for 90% of the radioactivity two... [Pg.83]


See other pages where Subject nuclear magnetic resonance is mentioned: [Pg.282]    [Pg.244]    [Pg.3]    [Pg.33]    [Pg.302]    [Pg.458]    [Pg.265]    [Pg.151]    [Pg.24]    [Pg.455]    [Pg.1]    [Pg.225]    [Pg.782]    [Pg.107]    [Pg.12]    [Pg.691]    [Pg.590]    [Pg.335]    [Pg.571]    [Pg.76]    [Pg.590]    [Pg.294]    [Pg.313]    [Pg.7]    [Pg.320]    [Pg.362]    [Pg.275]    [Pg.474]    [Pg.211]    [Pg.455]    [Pg.462]    [Pg.99]    [Pg.196]    [Pg.29]    [Pg.130]    [Pg.400]    [Pg.196]   
See also in sourсe #XX -- [ Pg.337 ]




SEARCH



Nuclear magnetic resonance spectroscopy Subject

Subject index Nuclear magnetic resonance spectroscopy

Subject magnetic

Subject magnetic, nuclear

Subject resonances

© 2024 chempedia.info