Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject magnetic, nuclear

Fig. 8. Heteronuclear single-quantum coherenc (HSQC) spectrum of the hypothetical protein of the flowering locus T protein produced in the cell-free system. The FT protein was synthesized in the same way as in Fig. 6 except that Ala, Leu, Gly, and Gin in both translation and substrate mixture were replaced with their -labeled forms (Isotec, Inc ). After incubation for 48 h, the reaction mixture (1 mL) was dialyzed against 10 mMphosphate buffer (pH 6.5) overnight, and then centrifuged at 30,000g for 10 min. The supernatant containing 30 xMof the protein was directly subjected to nuclear magnetic resonance spectroscopy. The spectrum was recorded on a Broker DMX-500 spectrometer at 25°C, and 2048 scans were averaged for the final H- WHSQC spectrum. Fig. 8. Heteronuclear single-quantum coherenc (HSQC) spectrum of the hypothetical protein of the flowering locus T protein produced in the cell-free system. The FT protein was synthesized in the same way as in Fig. 6 except that Ala, Leu, Gly, and Gin in both translation and substrate mixture were replaced with their -labeled forms (Isotec, Inc ). After incubation for 48 h, the reaction mixture (1 mL) was dialyzed against 10 mMphosphate buffer (pH 6.5) overnight, and then centrifuged at 30,000g for 10 min. The supernatant containing 30 xMof the protein was directly subjected to nuclear magnetic resonance spectroscopy. The spectrum was recorded on a Broker DMX-500 spectrometer at 25°C, and 2048 scans were averaged for the final H- WHSQC spectrum.
A comprehensive selection of reviews, books and S5miposia on the subject of nuclear magnetic resonance. [Pg.21]

The first four chapters should serve as sufficient introduction to carbon NMR spectroscopy so that someone well-versed in proton spectroscopy will be able to take full advantage of the data in the subsequent chapters. However, we make no pretense as to providing a meaningful background for development of the subject of nuclear magnetic resonance in general and the beginner to this field is referred to any one of the numerous and excellent texts available on this subject. [Pg.3]

Nuclear magnetic resonance has become such an importnat technique in organic chemistry that contemporary textbooks in the subject discuss its principles quite thoroughly, as do texts in physical and analytical chemistry. We note only a few pertinent highlights of the method ... [Pg.463]

Very little in the way of advances has occurred since 1971 in the applications of ultraviolet or infrared spectroscopy to the analysis of fluonnated organic compounds Therefore, only gas-liquid chromatography, liquid chromatography, mass spectrometry, and electron scattering for chemical analysis (ESCA) are discussed The application of nuclear magnetic resonance (NMR) spectroscopy to the analysis of fluonnated organic compounds is the subject of another section of this chapter... [Pg.1029]

The presence of iminium salts can be detected by chemical means or by spectroscopic methods. The chemical means of detecting iminium salts are reactions with nucleophiles and are the subject of this review. The spectroscopic methods are more useful for rapid identification because with the large number of model compounds available now the spectroscopic methods are fast and reliable. The two methods that are used primarily are infrared and nuclear magnetic resonance spectroscopy. Some attempts have been made to determine the presence of iminium salts by ultraviolet spectroscopy, but these are not definitive as yet (14,25). [Pg.176]

In this review the definition of orientation and orientation functions or orientation averages will be considered in detail. This will be followed by a comprehensive account of the information which can be obtained by three spectroscopic techniques, infra-red and Raman spectroscopy and broad line nuclear magnetic resonance. The use of polarized fluorescence will not be discussed here, but is the subject of a contemporary review article by the author and J. H. Nobbs 1. The present review will be completed by consideration of the information which has been obtained on the development of molecular orientation in polyethylene terephthalate and poly(tetramethylene terephthalate) where there are also clearly defined changes in the conformation of the molecule. In this paper, particular attention will be given to the characterization of biaxially oriented films. Previous reviews of this subject have been given by the author and his colleagues, but have been concerned with discussion of results for uniaxially oriented systems only2,3). [Pg.83]

In this review recent theoretical developments which enable quantitative measures of molecular orientation in polymers to be obtained from infra-red and Raman spectroscopy and nuclear magnetic resonance have been discussed in some detail. Although this is clearly a subject of some complexity, it has been possible to show that the systematic application of these techniques to polyethylene terephthalate and polytetramethylene terephthalate can provide unique information of considerable value. This information can be used on the one hand to gain an understanding of the mechanisms of deformation, and on the other to provide a structural understanding of physical properties, especially mechanical properties. [Pg.114]

A more constructive approach to nuclear fusion—one that achieves a controlled release of nuclear energy—is to heat a plasma, or ionized gas, by passing an electric current through it. The very fast ions in the plasma are kept away from the walls of the container with magnetic fields. This method of achieving fusion is the subject of intense research and is beginning to show signs of success (Fig. 17.27). [Pg.840]

The identification, using analytical microprobe and solid-state magic-angle nuclear magnetic resonance (NM techniques, of aluminosilicate deposits in the cores of the pathognomic senile plaques in the brains of Alzheimer subjects (Candy et al., 1986) has prompted widespread scientific and public concern, and controversy with regard to the possible aetiological role of environmental aluminium and aluminosilicates in senile dementia (Walton, 1991). [Pg.252]

Translational levels are too closely spaced to be considered quantized, while the very small differences between nuclear spin levels arise only when the molecules are subjected to a strong magnetic field. [Pg.354]

The title Spectroscopy in Catalysis is attractively compact but not quite precise. The book also introduces microscopy, diffraction and temperature programmed reaction methods, as these are important tools in the characterization of catalysts. As to applications, I have limited myself to supported metals, oxides, sulfides and metal single crystals. Zeolites, as well as techniques such as nuclear magnetic resonance and electron spin resonance have been left out, mainly because the author has little personal experience with these subjects. Catalysis in the year 2000 would not be what it is without surface science. Hence, techniques that are applicable to study the surfaces of single crystals or metal foils used to model catalytic surfaces, have been included. [Pg.10]

Nuclear magnetic resonance (NMR) spectroscopy is used to study the behavior of the nuclei in a molecule when subjected to an externally applied magnetic field. Nuclei spin about the axis of the externally applied magnetic field and consequently possess an angular momentum. The group of nuclei most commonly exploited in the structural... [Pg.15]


See other pages where Subject magnetic, nuclear is mentioned: [Pg.80]    [Pg.12]    [Pg.1466]    [Pg.6]    [Pg.2]    [Pg.153]    [Pg.272]    [Pg.282]    [Pg.244]    [Pg.4]    [Pg.3]    [Pg.98]    [Pg.33]    [Pg.302]    [Pg.458]    [Pg.265]    [Pg.151]    [Pg.24]    [Pg.455]    [Pg.196]    [Pg.1]    [Pg.502]    [Pg.225]    [Pg.205]    [Pg.439]    [Pg.782]    [Pg.92]    [Pg.107]    [Pg.202]    [Pg.232]    [Pg.249]    [Pg.12]    [Pg.268]    [Pg.691]    [Pg.590]    [Pg.335]    [Pg.571]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Nuclear magnetic resonance Subject

Nuclear magnetic resonance spectroscopy Subject

Subject index Nuclear magnetic resonance spectroscopy

Subject magnetic

© 2024 chempedia.info