Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance molecular structure determination

Besides the classical techniques for structural determination of proteins, namely X-ray diffraction or nuclear magnetic resonance, molecular modelling has become a complementary approach, providing refined structural details [4—7]. This view on the atomic scale paves the way to a comprehensive smdy of the correlations between protein structure and function, but a realistic description relies strongly on the performance of the theoretical tools. Nowadays, a full size protein is treated by force fields models [7-10], and smaller motifs, such as an active site of an enzyme, by multiscale approaches involving both quantum chemistry methods for local description, and molecular mechanics for its environment [11]. However, none of these methods are ab initio force fields require a parameterisation based on experimental data of model systems DPT quantum methods need to be assessed by comparison against high level ab initio calculations on small systems. [Pg.227]

Nuclear magnetic resonance (NMR) spectroscopy (Section 13 3) A method for structure determination based on the effect of molecular environment on the energy required to promote a given nucleus from a lower energy spin state to a higher energy state... [Pg.1289]

Several modem analytical instruments are powerful tools for the characterisation of end groups. Molecular spectroscopic techniques are commonly employed for this purpose. Nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and mass spectrometry (MS), often in combination, can be used to elucidate the end group structures for many polymer systems more traditional chemical methods, such as titration, are still in wide use, but employed more for specific applications, for example, determining acid end group levels. Nowadays, NMR spectroscopy is usually the first technique employed, providing the polymer system is soluble in organic solvents, as quantification of the levels of... [Pg.172]

The techniques available to achieve molecular structure determinations are limited. They include structural analysis with diffraction techniques—such as electron, neutron, and x-ray diffraction—and various absorption and emission techniques of electromagnetic radiation—such as microwave spectroscopy and nuclear magnetic resonance (NMR). For molecules with unpaired spins a companion technique of electron spin resonance spectroscopy (ESR) is highly informative. [Pg.57]

A full range of spectral data was routinely reported for each of the new compounds isolated. Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography have essentially only been used as methods of structure determination/ confirmation and the results are unexceptional. The use of mass spectrometry in these series of compounds has been mainly confined to molecular ion determination. Ultraviolet (UV), infrared (IR), and Raman techniques have been used for confirmation of structures, but no special report has been published. The major data in this field are well documented in CHEC-II(1996) and will not be reproduced in this chapter. Over the last decade, all these methods played a major role in establishing the structure, but did not provide new interesting structural information on these bicyclic systems. In consequence, these methods are not considered worthy of mention in detail here. [Pg.135]

A researcher in the field of heterogeneous catalysis, alongside the important studies of catalysts chemical properties (i.e., properties at a molecular level), inevitably encounters problems determining the catalyst structure at a supramolecular (textural) level. A powerful combination of physical and chemical methods (numerous variants x-ray diffraction (XRD), IR, nuclear magnetic resonance (NMR), XPS, EXAFS, ESR, Raman of Moessbauer spectroscopy, etc. and achievements of modem analytical chemistry) may be used to study the catalysts chemical and phase molecular structure. At the same time, characterizations of texture as a fairytale Cinderella fulfill the routine and very frequently senseless work, usually limited (obviously in our modem transcription) with electron microscopy, formal estimation of a surface area by a BET method, and eventually with porosimetry without any thorough insight. [Pg.258]

Infrared (IR) spectroscopy was the first modern spectroscopic method which became available to chemists for use in the identification of the structure of organic compounds. Not only is IR spectroscopy useful in determining which functional groups are present in a molecule, but also with more careful analysis of the spectrum, additional structural details can be obtained. For example, it is possible to determine whether an alkene is cis or trans. With the advent of nuclear magnetic resonance (NMR) spectroscopy, IR spectroscopy became used to a lesser extent in structural identification. This is because NMR spectra typically are more easily interpreted than are IR spectra. However, there was a renewed interest in IR spectroscopy in the late 1970s for the identification of highly unstable molecules. Concurrent with this renewed interest were advances in computational chemistry which allowed, for the first time, the actual computation of IR spectra of a molecular system with reasonable accuracy. This chapter describes how the confluence of a new experimental technique with that of improved computational methods led to a major advance in the structural identification of highly unstable molecules and reactive intermediates. [Pg.148]

In earlier literature reports, x-ray data of a-based ceramics, the /3-like phase observed in certain silica minerals was explained by a structural model based on disordered Q -tridymite. However, others have suggested that the structure of the stabilized jS-cristobalite-like ceramics is closer to that of a-cristobalite than that of Q -tridymite, based on the 29Si nuclear magnetic resonance (NMR) chemical shifts (Perrota et al 1989). Therefore, in the absence of ED data it is impossible to determine the microstructure of the stabilized jS-cristobalite-like phase. ED and HRTEM have provided details of the ceramic microstructure and NMR has provided information about the environments of silicon atoms in the structure. Infrared spectroscopy views the structure on a molecular level. [Pg.137]


See other pages where Nuclear magnetic resonance molecular structure determination is mentioned: [Pg.73]    [Pg.83]    [Pg.14]    [Pg.522]    [Pg.219]    [Pg.240]    [Pg.265]    [Pg.2]    [Pg.522]    [Pg.241]    [Pg.4]    [Pg.123]    [Pg.158]    [Pg.298]    [Pg.5]    [Pg.123]    [Pg.169]    [Pg.3]    [Pg.237]    [Pg.94]    [Pg.391]    [Pg.311]    [Pg.335]    [Pg.227]    [Pg.500]    [Pg.187]    [Pg.153]    [Pg.40]    [Pg.72]    [Pg.97]    [Pg.150]    [Pg.514]    [Pg.514]    [Pg.514]    [Pg.14]    [Pg.43]    [Pg.276]    [Pg.208]    [Pg.101]    [Pg.233]    [Pg.199]   
See also in sourсe #XX -- [ Pg.368 , Pg.380 ]




SEARCH



Magnet molecular

Magnetic structure

Magnetism molecular

Magnetization determination

Molecular determinant

Molecular determination

Molecular magnetic

Molecular magnets magnetic

Molecular resonance

Molecular structure determination

Molecular structure determining

Nuclear magnetic resonance structure determination

Nuclear structure

Resonance structures

Resonances determination

Structure nuclear magnetic resonance

© 2024 chempedia.info