Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Model Nuclear magnetic resonance

The Nuclear Magnetic Resonance Model In this section a nuclear magnetic resonance multi state model is fitted to the experimental relaxation data shown in Figures 1 and 2. A fit is not attempted for sample 5 at 100% RH because of the anomolous Ti,T2versus 10VT°K profiles produced by freezing (see Figure 1). [Pg.331]

Lipari G and Szabo A 1982 Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules 1. Theory and range of validity J. Am. Chem. Soc. 104 4546-59... [Pg.1516]

Because this problem is complex several avenues of attack have been devised in the last fifteen years. A combination of experimental developments (protein engineering, advances in x-ray and nuclear magnetic resonance (NMR), various time-resolved spectroscopies, single molecule manipulation methods) and theoretical approaches (use of statistical mechanics, different computational strategies, use of simple models) [5, 6 and 7] has led to a greater understanding of how polypeptide chains reach the native confonnation. [Pg.2642]

Nuclear magnetic resonance (NMR) spectroscopy is a valuable technique for obtaining chemical information. This is because the spectra are very sensitive to changes in the molecular structure. This same sensitivity makes NMR a difficult case for molecular modeling. [Pg.252]

Nuclear Magnetic Resonance. The iateraction of a nucleus with Bq is usually described usiag vector notation and models as ia Figure 2 where the bulk magnetization, Af, and the static field Bq are initially parallel to A radio frequency pulse is appHed ia the xy plane for a duration of t p.s,... [Pg.399]

These ideas have been extended using new analytical techniques, in particular molecular modeling and soHd-state nuclear magnetic resonance (nmr) spectroscopy. [Pg.124]

The presence of iminium salts can be detected by chemical means or by spectroscopic methods. The chemical means of detecting iminium salts are reactions with nucleophiles and are the subject of this review. The spectroscopic methods are more useful for rapid identification because with the large number of model compounds available now the spectroscopic methods are fast and reliable. The two methods that are used primarily are infrared and nuclear magnetic resonance spectroscopy. Some attempts have been made to determine the presence of iminium salts by ultraviolet spectroscopy, but these are not definitive as yet (14,25). [Pg.176]

R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors, /. Chem. Phys., 104, 5497(1996). [Pg.110]

Mathematical models are the link between what is observed experimentally and what is thought to occur at the molecular level. In physical sciences, such as chemistry, there is a direct correspondence between the experimental observation and the molecular world (i.e., a nuclear magnetic resonance spectrum directly reflects the interaction of hydrogen atoms on a molecule). In pharmacology the observations are much more indirect, leaving a much wider gap between the physical chemistry involved in drug-receptor interaction and what the cell does in response to those interactions (through the cellular veil ). Hence, models become uniquely important. [Pg.42]

ADMET polymers are easily characterized using common analysis techniques, including nuclear magnetic resonance ( H and 13C NMR), infrared (IR) spectra, elemental analysis, gel permeation chromatography (GPC), vapor pressure osmometry (VPO), membrane osmometry (MO), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The preparation of poly(l-octenylene) (10) via the metathesis of 1,9-decadiene (9) is an excellent model polymerization to study ADMET, since the monomer is readily available and the polymer is well known.21 The NMR characterization data (Fig. 8.9) for the hydrogenated versions of poly(l-octenylene) illustrate the clean and selective nature of ADMET. [Pg.442]

The formation of compound (1) has been established under well-defined laboratory conditions in such reaction mixtures [15,26-35]. Comparison of nuclear magnetic resonance (NMR) spectra of model compounds prepared by Bakker and Cerfontain [29] with those of the reaction mixture has also clearly shown the presence of (1). p-Sultones (1) have also been identified in commercial scale equipment under less well-defined conditions [21-24]. [Pg.368]

This comprehensive review of theoretical models and techniques will be invaluable to theorists and experimentalists in the fields of infrared and Raman spectroscopy, nuclear magnetic resonance, electron spin resonance and flame thermometry. It will also be useful to graduate students of molecular dynamics and spectroscopy. [Pg.301]

FIG. 23 Comparison of various one-parameter diffusion models. (Reproduced with permission from Ref. 448, Analysis of Diffusion and Structure in Polyacrylamide Gels by Nuclear Magnetic Resonance, M.S. Thesis, Florida State University, Copyright 1997, Brigita Penke.)... [Pg.576]

Flohr S, Kurz M, Kostenis E, Brkovich A, Fournier A, Klabunde T. Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure-activity relationships and nuclear magnetic resonance studies on urotensin II. J Med Ghent 2002 45 1799-805. [Pg.418]

To illustrate the utility of the MWBD method, a series of commercial polyvinyl acetates and low density polyethylenes are analyzed. Either kinetic models or 13c nuclear magnetic resonance results are used to estimate the branching structural parameter. [Pg.147]

F. Volke, A. Pampel 1995, (Membrane hydration and structure on a subnanometer scale as seen by high resolution solid state nuclear magnetic resonance POPC and P0PC/C12E04 model membranes), Biophys.J. 68, 1960-1965. [Pg.76]

E. J. Fordham, W. E. Kenyon, D. J. Wilkinson 1999, (Forward models for nuclear magnetic resonance in carbonate rocks), Log Analyst 40 (4), 260-270. [Pg.339]

McMahon, M. T., deDios, A. D, Godbout, N., Salzmann, R., Laws, D. D., Le, H., Havlin, R. H., Oldfield, E., 1998, An Experimental and Quantum Chemical Investigation of CO Binding to Heme Proteins and Model Systems A Unified Model Based on 13C, 170 and 57Fe Nuclear Magnetic Resonance and 57Fe Mossbauer and Infrared Spectroscopies , J. Am. Chem. Soc., 120, 4784. [Pg.295]

Proton and carbon-13 nuclear magnetic resonance (NMR) spectra were recorded on a IBM Instruments 270 MHz NMR Spectrometer on 6-8 weight percent solutions in deuterated chloroform. Ultraviolet spectra were recorded on an IBM Ultraviolet Spectropluitometer Model 9420 using chloroform solutions containing 2 x 10-5 g/ml of the copolymers. [Pg.113]


See other pages where Model Nuclear magnetic resonance is mentioned: [Pg.2815]    [Pg.114]    [Pg.334]    [Pg.219]    [Pg.240]    [Pg.394]    [Pg.3]    [Pg.285]    [Pg.298]    [Pg.301]    [Pg.352]    [Pg.387]    [Pg.209]    [Pg.285]    [Pg.449]    [Pg.256]    [Pg.521]    [Pg.160]    [Pg.544]    [Pg.158]    [Pg.225]    [Pg.294]    [Pg.282]    [Pg.89]    [Pg.434]    [Pg.298]    [Pg.357]    [Pg.62]   
See also in sourсe #XX -- [ Pg.206 ]




SEARCH



Carbon-13 nuclear magnetic resonance model compounds

Magnetization model

Model nuclear

Molecular modeling nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance coupling model

Nuclear magnetic resonance imaging structural models

Nuclear magnetic resonance model compound analysis

Nuclear magnetic resonance model compounds

Nuclear magnetic resonance spectroscopy model compounds

Nuclear magnetic resonance statistical modeling

Nuclear magnetic resonance structural modeling

Nuclear magnetic resonance vector model

Resonance model

Resonant model

© 2024 chempedia.info