Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance difference spectroscopy

The field of steroid analysis includes identification of steroids in biological samples, analysis of pharmaceutical formulations, and elucidation of steroid stmctures. Many different analytical methods, such as ultraviolet (uv) spectroscopy, infrared (ir) spectroscopy, nuclear magnetic resonance (nmr) spectroscopy, x-ray crystallography, and mass spectroscopy, are used for steroid analysis. The constant development of these analytical techniques has stimulated the advancement of steroid analysis. [Pg.448]

Because carotenoids are light- and oxygen-sensitive, a closed-loop hyphenated technique such as the on-line coupling of high performance liquid chromatography (HPLC) together with nuclear magnetic resonance (NMR) spectroscopy can be used for the artifact-free structural determination of the different isomers. [Pg.61]

Crosslinked polymer networks formed from multifunctional acrylates are completely insoluble. Consequently, solid-state nuclear magnetic resonance (NMR) spectroscopy becomes an attractive method to determine the degree of crosslinking of such polymers (1-4). Solid-state NMR spectroscopy has been used to study the homopolymerization kinetics of various diacrylates and to distinguish between constrained and unconstrained, or unreacted double bonds in polymers (5,6). Solid-state NMR techniques can also be used to determine the domain sizes of different polymer phases and to determine the presence of microgels within a poly multiacrylate sample (7). The results of solid-state NMR experiments have also been correlated to dynamic mechanical analysis measurements of the glass transition (1,8,9) of various polydiacrylates. [Pg.28]

Chemical constitution, steric configuration and, in some cases, details about chain conformation, aggregation, association, and supramolecular self-organization behavior of macromolecular substances can be determined using high-resolution nuclear magnetic resonance (NMR) spectroscopy. This spectroscopic technique is sensitive towards nuclei with a nuclear spin different from zero. [Pg.77]

Nuclear magnetic resonance (NMR) spectroscopy is the most widely used spectroscopic technique in synthetic chemistry [1], One main reason for the dominance of NMR is its versatility—by variation of only a few experimental parameters, a vast number of different NMR experiments can easily be performed, giving access to very different sets of information on the substance or the reaction under investigation. Today, NMR is dominant in structure elucidation, and in situ NMR spectroscopy can conveniently give insight into chemical reactions under real turnover conditions (in contrast to, e.g., x-ray crystallography, which can only provide a solid-state snapshot of a molecular conformation). [Pg.356]

Numerous analyses in the quality control of most kinds of samples occurring in the flavour industry are done by different chromatographic procedures, for example gas chromatography (GC), high-pressure liquid chromatography (fiPLC) and capillary electrophoresis (CE). Besides the different IR methods mentioned already, further spectroscopic techniques are used, for example nuclear magnetic resonance, ultraviolet spectroscopy, mass spectroscopy (MS) and atomic absorption spectroscopy. In addition, also in quality control modern coupled techniques like GC-MS, GC-Fourier transform IR spectroscopy, HPLC-MS and CE-MS are gaining more and more importance. [Pg.306]

The structures of vanicosides A (1) and B (2) and hydropiperoside (3) were established primarily by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy techniques and fast atom bombardment (FAB) mass spectrometry (MS).22 The presence of two different types of phenylpropanoid esters in 1 and 2 was established first through the proton (4H) NMR spectra which showed resonances for two different aromatic substitution patterns in the spectrum of each compound. Integration of the aromatic region defined these as three symmetrically substituted phenyl rings, due to three p-coumaryl moieties, and one 1,3,4-trisubstituted phenyl ring, due to a feruloyl ester. The presence of a sucrose backbone was established by two series of coupled protons between 3.2 and 5.7 ppm in the HNMR spectra, particularly the characteristic C-l (anomeric) and C-3 proton doublets... [Pg.171]

The application of nuclear magnetic resonance (NMR) spectroscopy to polymer systems has contributed to significant advances in understanding of their structure and dynamical properties at the molecular level. From the analytical point of view, NMR spectroscopy is particularly suitable for a determination of the polymer structure by direct observation of the protons and carbons in different structural moieties. However, until the mid-1970s the application of this technique was limited to polymer solutions and to some elastomers in the solid state with a relatively high degree of the molecular mobility which allows the observation of the motionally narrowed absorption signals. [Pg.8]

Nuclear magnetic resonance (NMR) spectroscopy is also largely used to characterize C02 complexes. The 13C NMR spectrum of C02 dissolved in a nonpolar solvent shows a resonance at 124ppm, which is shifted when C02 is bonded to a metal center. Depending on the mode of bonding, the shift may be up or down field, and may vary from a few ppm up to several hundreds of ppm. A few examples are given below for different types of bonding. [Pg.58]

Because of polydisperse nature of HS, the importance of separation methods increased as the science evolved. Various separation methods were widely used for conventional fractionation and characterization of components based on differences in component solubility, charge, molecular weight, and/or size, polarity, hydropho-bicity, and so on (Janos, 2003). More recent research focused on advanced molecular-level analyses of humic mixtures (Hertkorn and Schmitt-Kopplin, 2007), in which a combination of separation techniques, mostly, chromatography, or capillary electrophoresis) were coupled with high-resolution instrumental analysis [e.g., mass spectrometry (MS) or nuclear magnetic resonance (NMR) spectroscopy]. Several examples appeared in the literature, including those that used size exclusion chro-... [Pg.488]

Peak purity can be assessed with a higher degree of certainty only by additional analysis using a significantly different chromatographic mode. The collected sample should also be analyzed by techniques that can be sensitive to minor structural differences such as nuclear magnetic resonance (NMR) spectroscopy [29-31]. [Pg.9]

An important objective in materials science is the establishment of relationships between the microscopic structure or molecular dynamics and the resulting macroscopic properties. Once established, this knowledge then allows the design of improved materials. Thus, the availability of powerful analytical tools such as nuclear magnetic resonance (NMR) spectroscopy [1-6] is one of the key issues in polymer science. Its unique chemical selectivity and high flexibility allows one to study structure, chain conformation and molecular dynamics in much detail and depth. NMR in its different variants provides information from the molecular to the macroscopic length scale and on molecular motions from the 1 Hz to 1010 Hz. It can be applied to crystalline as well as to amorphous samples which is of particular importance for the study of polymers. Moreover, NMR can be conveniently applied to polymers since they contain predominantly nuclei that are NMR sensitive such as H and 13C. [Pg.519]


See other pages where Nuclear magnetic resonance difference spectroscopy is mentioned: [Pg.521]    [Pg.153]    [Pg.1132]    [Pg.538]    [Pg.3]    [Pg.427]    [Pg.542]    [Pg.8]    [Pg.34]    [Pg.27]    [Pg.391]    [Pg.321]    [Pg.538]    [Pg.40]    [Pg.303]    [Pg.17]    [Pg.50]    [Pg.510]    [Pg.11]    [Pg.67]    [Pg.456]    [Pg.14]    [Pg.267]    [Pg.13]    [Pg.163]    [Pg.64]    [Pg.240]    [Pg.128]    [Pg.186]    [Pg.248]    [Pg.96]    [Pg.528]    [Pg.515]    [Pg.149]    [Pg.216]    [Pg.395]    [Pg.66]    [Pg.13]   


SEARCH



Difference spectroscopy

© 2024 chempedia.info